Scientific Computing with MATLAB and Octave


Book Description

Preface to the First Edition This textbook is an introduction to Scienti?c Computing. We will illustrate several numerical methods for the computer solution of c- tain classes of mathematical problems that cannot be faced by paper and pencil. We will show how to compute the zeros or the integrals of continuous functions, solve linear systems, approximate functions by polynomials and construct accurate approximations for the solution of di?erential equations. With this aim, in Chapter 1 we will illustrate the rules of the game thatcomputersadoptwhenstoringandoperatingwith realandcomplex numbers, vectors and matrices. In order to make our presentation concrete and appealing we will 1 adopt the programming environment MATLAB as a faithful c- panion. We will gradually discover its principal commands, statements and constructs. We will show how to execute all the algorithms that we introduce throughout the book. This will enable us to furnish an - mediate quantitative assessment of their theoretical properties such as stability, accuracy and complexity. We will solve several problems that will be raisedthrough exercises and examples, often stemming from s- ci?c applications.




CÁLCULO CIENTÍFICO com MATLAB e Octave


Book Description

Este livro é uma introdução ao Cálculo Científico. O seu objectivo consiste em apresentar vários métodos numéricos para resolver no computador certos problemas matemáticos que não podem ser tratados de maneira mais simples. São abordadas questões clássicas como o cálculo de zeros ou de integrais de funções contínuas, a resolução de sistemas lineares, a aproximação de funções por polinómios e a construção de aproximações precisas de soluções de equações diferenciais. Todos os algoritmos são apresentados nas linguagens de programação MATLAB e Octave, cujos comandos e instruções principais se introduzem de forma gradual, visando em particular a sua compatibilidade nas duas linguagens. O leitor pode assim verificar experimentalmente propriedades teóricas como a estabilidade, a precisão e a complexidade. O livro inclui ainda a resolução de problemas através de numerosos exercícios e exemplos, frequentemente ligados a aplicações concretas. No fim de cada capítulo encontra-se uma secção específica que apresenta assuntos não abordados e as referências bibliográficas que permitem ao leitor aprofundar os conhecimentos adquiridos.




A Primer on Scientific Programming with Python


Book Description

The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015




Adaptive Filtering


Book Description

Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area—the least mean square (LMS) adaptive filter. This largely self-contained text: Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton’s algorithm Addresses the basics of the LMS adaptive filter algorithm, considers LMS adaptive filter variants, and provides numerous examples Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.




Chemical Reactor Omnibook- soft cover


Book Description

The Omnibook aims to present the main ideas of reactor design in a simple and direct way. it includes key formulas, brief explanations, practice exercises, problems from experience and it skims over the field touching on all sorts of reaction systems. Most important of all it tries to show the reader how to approach the problems of reactor design and what questions to ask. In effect it tries to show that a common strategy threads its way through all reactor problems, a strategy which involves three factors: identifying the flow patter, knowing the kinetics, and developing the proper performance equation. It is this common strategy which is the heart of Chemical Reaction Engineering and identifies it as a distinct field of study.




Mathematical Chemistry and Chemoinformatics


Book Description

More than 20 years of experience in molecular structure generation, from conceptualization through to applications Innovative, interdisciplinary text demonstrating example queries with software packages such as MOLGEN-online Detailed explanations on establishing QSPRs and QSARs as well as structure elucidation using mass spectrometry and structure generation. Aims and Scope This work provides an introduction to mathematical modeling of molecules and the resulting applications (structure generation, structure elucidation, QSAR/QSPR etc.). Most chemists have experimented with some software that represents molecules in an electronic form, and such models and applications are of increasing interest in diverse and growing fields such as drug discovery, environmental science and metabolomics. Furthermore, structure generation remains the only way to systematically create molecules that are not (yet) present in a database. This book starts with the mathematical theory behind representing molecules, explaining chemical concepts in mathematical terms and providing exercises that can be completed online. The later chapters cover applications of the theory, with detailed explanations on QSPR and QSAR investigations and finally structure elucidation combining mass spectrometry and structure generation. This book is aimed in particular at the users of structure generation methods and corresponding techniques, but also for those interested in teaching and learning mathematical chemistry, and for software designers in chemoinformatics.




Cálculo Científico con MATLAB y Octave


Book Description

Este libro de texto es una introducción al Cálculo Científico, que ilustra varios métodos numéricos para la solución con computador de ciertas clases de problemas matemáticos. Los autores muestran cómo calcular los ceros o las integrales de funciones continuas, resolver sistemas lineales, aproximar funciones por polinomios y construir aproximaciones precisas para la solución de ecuaciones diferenciales. Para hacer la presentación concreta y atractiva, se ha adoptado el entorno de programación MATLAB como un fiel compañero. Se muestran todos los algoritmos introducidos a través del libro, suministrando de este modo una evaluación cuantitativa inmediata de sus propiedades teóricas como son la estabilidad, la precisión y la complejidad. El libro también contiene la solución de varios problemas planteados a través de ejercicios y ejemplos, a menudo surgidos de aplicaciones específicas. Se dedica una sección específica a temas que no fueron tratados en el libro y se indican algunas referencias bibliográficas para un tratamiento más completo de la materia.




Disjunctive Programming


Book Description

Disjunctive Programming is a technique and a discipline initiated by the author in the early 1970's, which has become a central tool for solving nonconvex optimization problems like pure or mixed integer programs, through convexification (cutting plane) procedures combined with enumeration. It has played a major role in the revolution in the state of the art of Integer Programming that took place roughly during the period 1990-2010. The main benefit that the reader may acquire from reading this book is a deeper understanding of the theoretical underpinnings and of the applications potential of disjunctive programming, which range from more efficient problem formulation to enhanced modeling capability and improved solution methods for integer and combinatorial optimization. Egon Balas is University Professor and Lord Professor of Operations Research at Carnegie Mellon University's Tepper School of Business.




Problem-Based Learning: A Didactic Strategy in the Teaching of System Simulation


Book Description

This book describes and outlines the theoretical foundations of system simulation in teaching, and as a practical contribution to teaching-and-learning models. It presents various methodologies used in teaching, the goal being to solve real-life problems by creating simulation models and probability distributions that allow correlations to be drawn between a real model and a simulated model. Moreover, the book demonstrates the role of simulation in decision-making processes connected to teaching and learning.




Modelling Environmental Dynamics


Book Description

Modelling environmental dynamics is critical to understanding and predicting the evolution of the environment in response to the large number of influences including urbanisation, climate change and deforestation. Simulation and modelling provide support for decision making in environmental management. The first chapter introduces terminology and provides an overview of methodological modelling approaches which may be applied to environmental and complex dynamics. Based on this introduction this book illustrates various models applied to a large variety of themes: deforestation in tropical regions, fire risk, natural reforestation in European mountains, agriculture, biodiversity, urbanism, climate change and land management for decision support, etc. These case studies, provided by a large international spectrum of researchers and presented in a uniform structure, focus particularly on methods and model validation so that this book is not only aimed at researchers and graduates but also at professionals.