Sage for Undergraduates


Book Description

As the open-source and free competitor to expensive software like MapleTM, Mathematica®, Magma, and MATLAB®, Sage offers anyone with access to a web browser the ability to use cutting-edge mathematical software and display his or her results for others, often with stunning graphics. This book is a gentle introduction to Sage for undergraduate students toward the end of Calculus II (single-variable integral calculus) or higher-level course work such as Multivariate Calculus, Differential Equations, Linear Algebra, or Math Modeling. The book assumes no background in computer science, but the reader who finishes the book will have learned about half of a first semester Computer Science I course, including large parts of the Python programming language. The audience of the book is not only math majors, but also physics, engineering, finance, statistics, chemistry, and computer science majors.







Integral, Measure and Derivative


Book Description

This treatment examines the general theory of the integral, Lebesque integral in n-space, the Riemann-Stieltjes integral, and more. "The exposition is fresh and sophisticated, and will engage the interest of accomplished mathematicians." — Sci-Tech Book News. 1966 edition.




Calculus for a New Century


Book Description

This document, intended as a resource for calculus reform, contains 75 separate contributions, comprising a very diverse set of opinions about the shape of calculus for a new century. The authors agree on the forces that are reshaping calculus, but disagree on how to respond to these forces. They agree that the current course is not satisfactory, yet disagree about new content emphases. They agree that the neglect of teaching must be repaired, but do not agree on the most promising avenues for improvement. The document contains: (1) a record of presentations prepared for a colloquium; (2) a collage of reactions to the colloquium by a variety of individuals representing diverse calculus constituencies; (3) summaries of 16 discussion groups that elaborate on particular themes of importance to reform efforts; (4) a series of background papers providing context for the calculus colloquium; (5) a selection of final examinations from Calculus I, II, and III from universities, colleges, and two-year colleges around the country; (6) a collection of reprints of documents related to calculus; and (7) a list of colloquium participants. (PK)







Thomas' Calculus


Book Description




A Biologist's Guide to Mathematical Modeling in Ecology and Evolution


Book Description

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available




Algorithms in Invariant Theory


Book Description

This book is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to research ideas, hints for applications, outlines and details of algorithms, examples and problems.