Calculus of Variations and Nonlinear Partial Differential Equations


Book Description

This volume provides the texts of lectures given by L. Ambrosio, L. Caffarelli, M. Crandall, L.C. Evans, N. Fusco at the Summer course held in Cetraro, Italy in 2005. These are introductory reports on current research by world leaders in the fields of calculus of variations and partial differential equations. Coverage includes transport equations for nonsmooth vector fields, viscosity methods for the infinite Laplacian, and geometrical aspects of symmetrization.




Variational Methods


Book Description

It would be hopeless to attempt to give a complete account of the history of the calculus of variations. The interest of Greek philosophers in isoperimetric problems underscores the importance of "optimal form" in ancient cultures, see Hildebrandt-Tromba [1] for a beautiful treatise of this subject. While variatio nal problems thus are part of our classical cultural heritage, the first modern treatment of a variational problem is attributed to Fermat (see Goldstine [1; p.l]). Postulating that light follows a path of least possible time, in 1662 Fer mat was able to derive the laws of refraction, thereby using methods which may already be termed analytic. With the development of the Calculus by Newton and Leibniz, the basis was laid for a more systematic development of the calculus of variations. The brothers Johann and Jakob Bernoulli and Johann's student Leonhard Euler, all from the city of Basel in Switzerland, were to become the "founding fathers" (Hildebrandt-Tromba [1; p.21]) of this new discipline. In 1743 Euler [1] sub mitted "A method for finding curves enjoying certain maximum or minimum properties", published 1744, the first textbook on the calculus of variations.




Calculus of Variations and Partial Differential Equations


Book Description

At the summer school in Pisa in September 1996, Luigi Ambrosio and Norman Dancer each gave a course on the geometric problem of evolution of a surface by mean curvature, and degree theory with applications to PDEs respectively. This self-contained presentation accessible to PhD students bridged the gap between standard courses and advanced research on these topics. The resulting book is divided accordingly into 2 parts, and neatly illustrates the 2-way interaction of problems and methods. Each of the courses is augmented and complemented by additional short chapters by other authors describing current research problems and results.




Numerical Methods for Nonlinear Partial Differential Equations


Book Description

The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.




Nonlinear Partial Differential Equations with Applications


Book Description

This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition leads the reader through the general theory based on abstract (pseudo-) monotone or accretive operators as fast as possible towards the analysis of concrete differential equations, which have specific applications in continuum (thermo-) mechanics of solids and fluids, electrically (semi-) conductive media, modelling of biological systems, or in mechanical engineering. Selected parts are mainly an introduction into the subject while some others form an advanced textbook. The second edition simplifies and extends the exposition at particular spots and augments the applications especially towards thermally coupled systems, magnetism, and more. The intended audience is graduate and PhD students as well as researchers in the theory of partial differential equations or in mathematical modelling of distributed parameter systems. ------ The monograph contains a wealth of material in both the abstract theory of steady-state or evolution equations of monotone and accretive type and concrete applications to nonlinear partial differential equations from mathematical modeling. The organization of the material is well done, and the presentation, although concise, is clear, elegant and rigorous. (...) this book is a notable addition to the existing literature. Also, it certainly will prove useful to engineers, physicists, biologists and other scientists interested in the analysis of (...) nonlinear differential models of the real world. (Mathematical Reviews)




An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L∞


Book Description

The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutions generally are non-smooth and standard approaches in order to define a "weak solution" do not apply: classical, strong almost everywhere, weak, measure-valued and distributional solutions either do not exist or may not even be defined. The main reason for the latter failure is that, the standard idea of using "integration-by-parts" in order to pass derivatives to smooth test functions by duality, is not available for non-divergence structure PDE.




Partial Differential Equations and the Calculus of Variations


Book Description

The Italian school of Mathematical Analysis has long and glo rious traditions. In the last thirty years it owes very much to the scientific pre-eminence of Ennio De Giorgi, Professor of Mathemati cal Analysis at the Scuola Normale Superiore di Pisa. His fundamental theorems in Calculus of Variations, in Minimal Surfaces Theory, in Partial Differential Equations, in Axiomatic Set Theory as well as the fertility of his mind to discover both general mathematical structures and techniques which frame many different problems, and profound and meaningful examples which show the limits of a theory and give origin to new results and theories, makes him an absolute reference point for all Italian mathematicians, and a well-known and valued personage in the international mathematical world. We have been students of Ennio de Giorgi. Now, we are glad to present to him, together with all his collegues, friends and former students, these Essays of Mathematical Analysis written in his hon our on the occasion of his sixtieth birthday (February 8th, 1988), with our best wishes and our thanks for all he gave in the past and will give us in the future. We have added to the research papers of this book the text of a conversation with Ennio De Giorgi about the diffusion and the communication of science and, in particular, of Mathematics.




Partial Differential Equations and the Calculus of Variations


Book Description

The Italian school of Mathematical Analysis has long and glo rious traditions. In the last thirty years it owes very much to the scientific pre-eminence of Ennio De Giorgi, Professor of Mathemati cal Analysis at the Scuola Normale Superiore di Pisa. His fundamental theorems in Calculus of Variations, in Minimal Surfaces Theory, in Partial Differential Equations, in Axiomatic Set Theory as well as the fertility of his mind to discover both general mathematical structures and techniques which frame many different problems, and profound and meaningful examples which show the limits of a theory and give origin to new results and theories, makes him an absolute reference point for all Italian mathematicians, and a well-known and valued personage in the international mathematical world. We have been students of Ennio de Giorgi. Now, we are glad to present to him, together with all his collegues, friends and former students, these Essays of Mathematical Analysis written in his hon our on the occasion of his sixtieth birthday (February 8th, 1988), with our best wishes and our thanks for all he gave in the past and will give us in the future. We have added to the research papers of this book the text of a conversation with Ennio De Giorgi about the diffusion and the communication of science and, in particular, of Mathematics.