Cancer Biology: How Science Works


Book Description

Cancer is a collection of diseases that can affect basically every organ of our body, all of which have in common uncontrolled cellular growth. The cells forming our body have the potential to grow in the context of wound healing or for the constant replacement of cells in our blood, skin or intestine. Behind every newly diagnosed malignant tumor in adulthood there is an individual history of probably 20 or more years of tumorigenesis. Therefore, malignant tumor formation often takes time making cancer in most cases to an aging-related disease that we seem not to be able to evade. However, tumorigenesis is dependent on multiple environmental influences, many of which we have under control by lifestyle decisions, such as retaining from smoking, selecting healthy food and being physically active. Thus, cancer preventive interventions are the most effective way to fight against cancer. This textbook wants not only to describe basic mechanisms leading to cancer but also to provide the readers with a more holistic view including cancer surveaillance mechanisms of the immune system. We will place these insights in the context of the personal consequences of everyone’s lifestyle decisions. The content of the book is linked to the lecture course in “Cancer Biology”, which is given by Prof. Carlberg since 2005 at the University of Eastern Finland in Kuopio. Moreover, biological processes explained in this book will be set into a clinical context using the experience of Dr. Velleuer in the daily care in oncology. This book also relates to the textbooks “Mechanisms of Gene Regulation: How Science Works” (ISBN 978-3-030-52321-3), “Human Epigenetics: How Science Works” (ISBN 978-3-030-22907-8) and “Nutrigenomics: How Science Works” (ISBN 978-3-030-36948-4), the studying of which may be interesting to readers who like to get more detailed information.




How Cancer Works


Book Description

Lauren Sompayrac explains the basics of cancer: what it is, what it does, and what is being done to try to cure it.




Computational Biology Of Cancer: Lecture Notes And Mathematical Modeling


Book Description

The book shows how mathematical and computational models can be used to study cancer biology. It introduces the concept of mathematical modeling and then applies it to a variety of topics in cancer biology. These include aspects of cancer initiation and progression, such as the somatic evolution of cells, genetic instability, and angiogenesis. The book also discusses the use of mathematical models for the analysis of therapeutic approaches such as chemotherapy, immunotherapy, and the use of oncolytic viruses.







Oxford Textbook of Cancer Biology


Book Description

The study of the biology of tumours has grown to become markedly interdisciplinary, involving chemists, statisticians, epidemiologists, mathematicians, bioinformaticians, and computer scientists alongside biologists, geneticists, and clinicians. The Oxford Textbook of Cancer Biology brings together the most up-to-date developments from different branches of research into one coherent volume, providing a comprehensive and current account of this rapidly evolving field. Structured in eight sections, the book starts with a review of the development and biology of multi-cellular organisms, how they maintain a healthy homeostasis in an individual, and a description of the molecular basis of cancer development. The book then illustrates, as once cells become neoplastic, their signalling network is altered and pathological behaviour follows. It explores the changes that cancer cells can induce in nearby normal tissue, the new relationship established between them and the stroma, and the interaction between the immune system and tumour growth. The authors illustrate the contribution provided by high throughput techniques to map cancer at different levels, from genomic sequencing to cellular metabolic functions, and how information technology, with its vast amounts of data, is integrated with traditional cell biology to provide a global view of the disease. The effect of the different types of treatments on the biology of the neoplastic cells are explored to understand on the one side, why some treatments succeed, and on the other, how they can affect the biology of resistant and recurrent disease. The book concludes by summarizing what we know to date about cancer, and in what direction our understanding of cancer is moving. Edited by leading authorities in the field with an international team of contributors, this book is an essential resource for scholars and professionals working in the wide variety of sub-disciplines that make up today's cancer research and treatment community. It is written not only for consultation, but also for easy cover-to-cover reading.




Computational Systems Biology of Cancer


Book Description

The future of cancer research and the development of new therapeutic strategies rely on our ability to convert biological and clinical questions into mathematical models—integrating our knowledge of tumour progression mechanisms with the tsunami of information brought by high-throughput technologies such as microarrays and next-generation sequencing. Offering promising insights on how to defeat cancer, the emerging field of systems biology captures the complexity of biological phenomena using mathematical and computational tools. Novel Approaches to Fighting Cancer Drawn from the authors’ decade-long work in the cancer computational systems biology laboratory at Institut Curie (Paris, France), Computational Systems Biology of Cancer explains how to apply computational systems biology approaches to cancer research. The authors provide proven techniques and tools for cancer bioinformatics and systems biology research. Effectively Use Algorithmic Methods and Bioinformatics Tools in Real Biological Applications Suitable for readers in both the computational and life sciences, this self-contained guide assumes very limited background in biology, mathematics, and computer science. It explores how computational systems biology can help fight cancer in three essential aspects: Categorising tumours Finding new targets Designing improved and tailored therapeutic strategies Each chapter introduces a problem, presents applicable concepts and state-of-the-art methods, describes existing tools, illustrates applications using real cases, lists publically available data and software, and includes references to further reading. Some chapters also contain exercises. Figures from the text and scripts/data for reproducing a breast cancer data analysis are available at www.cancer-systems-biology.net.




How Science Works


Book Description

One week, red wine is good for the heart. The next week, new reports say it's bad for the health. So which is true? Anyone who's ever read science news with fascination, or who's ever been confounded by conflicting stories will appreciate this book. Taking a look at some true to life contemporary news stories, the author assesses recent studies on topics ranging from vitamin C and caffeine to pollution and cancer. With straight talk and a passion for the whole project of science, he demysifies the cult of the expert and sheds light on the nitty-gritty details of scientific processes. Any scientist loves a challenge, but the biggest challenge of all, observes Jenkins, is shared by scientists and nonscientitsts alike: how to make practical decisions in light of ambiguous evidence. Promising no simple answers, this book does offer excellent food for thought for people pondering that next glass of wine.




Molecular Medicine


Book Description

The fascinating area of molecular medicine provides a molecular and cellular description of health and disease. Starting with the understanding of gene regulation and epigenetics, i.e., the interplay of transcription factors and chromatin, this book will provide an fundamental basis of nearly all processes in physiology, both in health as well as in most common disorders, such as cancer, diabetes as well as in autoimmune diseases. Most non-communicable human diseases have a genetic (= inherited) as well as an epigenetic component. The later one is based on our lifestyle choices and environmental exposures. Many common diseases, such as type 2 diabetes, can be explained only to some 20% via a genetic predisposition. We cannot change the genes that we are born with but we can take care of the remaining 80% being primarily based on our epigenome. Therefore, there is a high level of individual responsibility for staying healthy. Thus, not only biologists and biochemists should be aware of this topic, but all students of biomedical disciplines will benefit from being introduced into the concepts of molecular medicine. This will provide them with a good basis for their specialized disciplines of modern life science research. The book is subdivided into 42 chapters that are linked to a series of lecture courses in “Molecular Medicine and Genetics”, “Molecular Immunology”, “Cancer Biology” and “Nutrigenomics” that is given by one of us (C. Carlberg) in different forms since 2002 at the University of Eastern Finland in Kuopio. This book represents an updated version and fusion of the books textbooks “Mechanisms of Gene Regulation: How Science Works” (ISBN 978-3-030-52321-3), “Human Epigenetics: How Science Works” (ISBN 978-3-030-22907-8). “Molecular Immunology: How Science Works” (ISBN 978-3-031-04024-5), “Cancer Biology: How Science Works” (ISBN 978-3-030-75699-4) and “Nutrigenomics: How Science Works” (ISBN 978-3-030-36948-4). By combining basic understanding of cellular mechanism with clinical examples, the authors hope to make this textbook a personal experience. A glossary in the appendix will explain the major specialist’s terms.




Nutrigenomics: How Science Works


Book Description

The fascinating area of Nutrigenomics describes this daily communication between our diet and our genome. This book describes how nutrition shapes human evolution and demonstrates its consequences for our susceptibility to diseases, such as diabetes and atherosclerosis. Inappropriate diet can yield stress for our cells, tissues and organs and then it is often associated with low-grade chronic inflammation. Overnutrition paired with physical inactivity leads to overweight and obesity and results in increased burden for a body that originally was adapted for a life in the savannahs of East Africa. Therefore, this textbook does not discuss a theoretical topic in science, but it talks about real life and our life-long “chat” with diet. We are all food consumers, thus each of us is concerned by the topic of this book and should be aware of its mechanisms. The purpose of this book is to provide an overview on the principles of nutrigenomics and their relation to health or disease. The content of this book is based on the lecture course “Nutrigenomics”, which is held since 2003 once per year by Prof. Carlberg at the University of Eastern Finland in Kuopio. The book represents an updated but simplified version of our textbook “Nutrigenomics” (ISBN 978-3-319-30413-7). Besides its value as a textbook, “Nutrigenomics: how science works” will be a useful reference for individuals working in biomedicine




Mechanisms of Gene Regulation: How Science Works


Book Description

This textbook aims to describe the fascinating area of eukaryotic gene regulation for graduate students in all areas of the biomedical sciences. Gene expression is essential in shaping the various phenotypes of cells and tissues and as such, regulation of gene expression is a fundamental aspect of nearly all processes in physiology, both in healthy and in diseased states. Th is pivotal role for the regulation of gene expression makes this textbook essential reading for students of all the biomedical sciences, in order to be better prepared for their specialized disciplines. A complete understanding of transcription factors and the processes that alter their activity is a major goal of modern life science research. The availability of the whole human genome sequence (and that of other eukaryotic genomes) and the consequent development of next-generation sequencing technologies have significantly changed nearly all areas of the biological sciences. For example, the genome-wide location of histone modifications and transcription factor binding sites, such as provided by the ENCODE consortium, has greatly improved our understanding of gene regulation. Therefore, the focus of this book is the description of the post-genome understanding of gene regulation.