Handbook of Optimization in Telecommunications


Book Description

This comprehensive handbook brings together experts who use optimization to solve problems that arise in telecommunications. It is the first book to cover in detail the field of optimization in telecommunications. Recent optimization developments that are frequently applied to telecommunications are covered. The spectrum of topics covered includes planning and design of telecommunication networks, routing, network protection, grooming, restoration, wireless communications, network location and assignment problems, Internet protocol, World Wide Web, and stochastic issues in telecommunications. The book’s objective is to provide a reference tool for the increasing number of scientists and engineers in telecommunications who depend upon optimization.




A Spare Capacity Planning Methodology for Wide Area Survivable Networks


Book Description

In this dissertation, a new spare capacity planning methodology is proposed utilizing path restoration. The approach is based on forcing working flows/traffic which are on paths that are disjoint to share spare backup capacity. The algorithm for determining the spare capacity assignment is based on genetic algorithms and is capable of incorporating non-linear variables such as non-linear cost function and QoS variables into the objective and constraints. The proposed methodology applies to a wider range of fault scenarios than most of the current literature. It can tolerate link-failures, node-failures, and link-and-node failures. It consists of two stages: the first stage generates a set of network topologies that maximize the sharing between backup paths by forcing them to use a subset of the original network. The second stage utilizes a genetic algorithm to optimize the set of solutions generated by the first stage to achieve an even better final solution. It can optimize the solution based on either minimizing spare capacity or minimizing the total network cost. In addition, it can incorporate QoS variables in both the objective and constraints to design a survivable network that satisfies QoS constraints. Numerical results comparing the proposed methodology to Integer Programming techniques and heuristics from the literature are presented showing the advantages of the technique. The proposed methodology was applied on 4 different size networks based on spare capacity optimization criteria and it was found that it achieved solutions that were on average 9.3% better than the optimal solution of the IP design that is based on link-restoration. It also achieved solutions that were on average 22.2 % better than the previous heuristic SLPA. The proposed methodology is very scalable. It was applied on networks with different sizes ranging from a 13-node network to a 70-node network. It was able to solve the 70-node network in less than one hour on a Pentium II PC. The curve-fitting of the empirical execution time of the methodology was found to be O(n3).







Telecommunications Network Design and Management


Book Description

Telecommunications Network Design And Management represents the state-of-the-art of applying operations research techniques and solutions across a broad spectrum of telecommunications problems and implementation issues. -The first three chapters of the book deal with the design of wireless networks, including UMTS and Ad-Hoc networks. -Chapters 4-6 deal with the optimal design of telecommunications networks. Techniques used for network design range from genetic algorithms to combinatorial optimization heuristics. -Chapters 7-10 analyze traffic flow in telecommunications networks, focusing on optimizing traffic load distribution and the scheduling of switches under multi-media streams and heavy traffic. -Chapters 11-14 deal with telecommunications network management, examining bandwidth provisioning, admission control, queue management, dynamic routing, and feedback regulation in order to ensure that the network performance is optimized. -Chapters 15-16 deal with the construction of topologies and allocation of bandwidth to ensure quality-of-service.




Communication in Transportation Systems


Book Description

Typically, communication technology breakthroughs and developments occur for the purposes of home, work, or cellular and mobile networks. Communications in transportation systems are often overlooked, yet they are equally as important. Communication in Transportation Systems brilliantly bridges theoretical knowledge and practical applications of cutting-edge technologies for communication in automotive applications. This reference source carefully covers innovative technologies which will continue to advance transportation systems. Researchers, developers, scholars, engineers, and graduate students in the transportation and automotive system, communication, electrical, and information technology fields will especially benefit from this advanced publication.










Routing, Flow, and Capacity Design in Communication and Computer Networks


Book Description

In network design, the gap between theory and practice is woefully broad. This book narrows it, comprehensively and critically examining current network design models and methods. You will learn where mathematical modeling and algorithmic optimization have been under-utilized. At the opposite extreme, you will learn where they tend to fail to contribute to the twin goals of network efficiency and cost-savings. Most of all, you will learn precisely how to tailor theoretical models to make them as useful as possible in practice.Throughout, the authors focus on the traffic demands encountered in the real world of network design. Their generic approach, however, allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network. For beginners, this book is an excellent introduction. For seasoned professionals, it provides immediate solutions and a strong foundation for further advances in the use of mathematical modeling for network design. - Written by leading researchers with a combined 40 years of industrial and academic network design experience. - Considers the development of design models for different technologies, including TCP/IP, IDN, MPLS, ATM, SONET/SDH, and WDM. - Discusses recent topics such as shortest path routing and fair bandwidth assignment in IP/MPLS networks. - Addresses proper multi-layer modeling across network layers using different technologies—for example, IP over ATM over SONET, IP over WDM, and IDN over SONET. - Covers restoration-oriented design methods that allow recovery from failures of large-capacity transport links and transit nodes. - Presents, at the end of each chapter, exercises useful to both students and practitioners.




Pain Management and the Opioid Epidemic


Book Description

Drug overdose, driven largely by overdose related to the use of opioids, is now the leading cause of unintentional injury death in the United States. The ongoing opioid crisis lies at the intersection of two public health challenges: reducing the burden of suffering from pain and containing the rising toll of the harms that can arise from the use of opioid medications. Chronic pain and opioid use disorder both represent complex human conditions affecting millions of Americans and causing untold disability and loss of function. In the context of the growing opioid problem, the U.S. Food and Drug Administration (FDA) launched an Opioids Action Plan in early 2016. As part of this plan, the FDA asked the National Academies of Sciences, Engineering, and Medicine to convene a committee to update the state of the science on pain research, care, and education and to identify actions the FDA and others can take to respond to the opioid epidemic, with a particular focus on informing FDA's development of a formal method for incorporating individual and societal considerations into its risk-benefit framework for opioid approval and monitoring.