Greenhouse Gas Balances of Bioenergy Systems


Book Description

Greenhouse Gases Balance of Bioenergy Systems covers every stage of a bioenergy system, from establishment to energy delivery, presenting a comprehensive, multidisciplinary overview of all the relevant issues and environmental risks. It also provides an understanding of how these can be practically managed to deliver sustainable greenhouse gas reductions. Its expert chapter authors present readers to the methods used to determine the greenhouse gas balance of bioenergy systems, the data required and the significance of the results obtained. It also provides in-depth discussion of key issues and uncertainties, such as soil, agriculture, forestry, fuel conversion and emissions formation. Finally, international case studies examine typical GHG reduction levels for different systems and highlight best practices for bioenergy GHG mitigation. For bringing together into one volume information from several different fields that was up until now scattered throughout many different sources, this book is ideal for researchers, graduate students and professionals coming into the bioenergy field, no matter their previous background. It will be particularly useful for bioenergy researchers seeking to calculate greenhouse gas balances for systems they are studying. I will also be an important resource for policy makers and energy analysts. - Uses a multidisciplinary approach to synthesize the diverse information that is required to competently execute GHG balances for bioenergy systems - Presents an in-depth understanding of the science underpinning key issues and uncertainty in GHG assessments of bioenergy systems - Includes case studies that examine ways to maximize the GHG reductions delivered by different bioenergy systems




Renewable Energy and Wildlife Conservation


Book Description

Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero




Balancing Renewable Electricity


Book Description

An important aim behind the restructuring of Germany’s and Europe’s electricity systems is to reduce the environmental burden, especially with respect to greenhouse gas emissions, of the current systems. Emissions must be brought down to a level that is sustainable in the long run and consistent with greenhouse gas emission reduction goals. Meeting these goals will require a system (as best as current knowledge suggests) that will be able to cope simultaneously with the fundamental demands for economic efficiency, environmental sustainability and supply security. Making use of existing scenarios, this study sketches such a system. It focuses in particular on auxiliary systems such as energy storage methods and network extensions. The study introduces technologies that can balance electricity in energy systems and that can serve as enabling technologies for the integration of large quantities of renewable energies in the power supply system. It begins with a discussion of normative aims for the future electricity system before continuing with a description of current policies and political developments and an overview of relevant existing energy system studies. These sections serve as background for the remainder of the study. They are followed by discussion and analysis of the growing demand for means to balance the fluctuations found in electricity generated in power systems with a high penetration of renewable energies, the potentials of diverse technologies, requirements for electrical networks, economic impacts and important legal issues. Finally, the main challenges to the achievement of developing balancing technologies and processes for renewable electricity-dominant systems are summarised and recommendations made.







Sustainable Environment and Carbon Balance Management


Book Description

Carbon dioxide undergoes exchange between the earth, biosphere, air and water. The processes of exchange between these reservoirs are mediated through the processes of transpiration, combustion, respiration and decomposition. The balance achieved between these is called the carbon balance. The widespread use of fossil fuels has led to the accumulation of carbon dioxide in the atmosphere resulting in adverse consequences, such as global warming. These effects can be managed by adhering to carbon cycle rebalancing strategies, which involve carbon capture and storage, promotion of carbon-offset mechanisms, adoption of sustainable energy, design and transport, etc. An example of a sustainable environmental practice is the burning of domestic waste to generate power. This book brings forth some of the most innovative concepts and elucidates the unexplored aspects of carbon balance management. Also included in this book is a detailed explanation of the strategies for sustainable environment. It will serve as a reference to a broad spectrum of readers.




Energy Sprawl Solutions


Book Description

Over the next several decades, as human populations grow, the demand for energy will soar. But renewable energy sources have a large energy sprawl--the amount of land needed to produce energy--which can threaten biodiversity. In Energy Sprawl Solutions, scientists Joseph M. Kiesecker and David Naugle provide a roadmap for preserving biodiversity despite the threats of energy sprawl. Their strategy--development by design--identifies and sets aside land where biodiversity can thrive while consolidating development in areas with lower biodiversity value. This contributed volume features case studies from countries around the world, each describing a different energy sector and the way they have successfully maximized biodiversity protection. This book provides a needed guide for elected officials, industry representatives, NGOs and community groups who have a stake in sustainable energy-development planning.




Modeling Forest Trees and Stands


Book Description

Drawing upon a wealth of past research and results, this book provides a comprehensive summary of state-of-the-art methods for empirical modeling of forest trees and stands. It opens by describing methods for quantifying individual trees, progresses to a thorough coverage of whole-stand, size-class and individual-tree approaches for modeling forest stand dynamics, growth and yield, moves on to methods for incorporating response to silvicultural treatments and wood quality characteristics in forest growth and yield models, and concludes with a discussion on evaluating and implementing growth and yield models. Ideal for use in graduate-level forestry courses, this book also provides ready access to a plethora of reference material for researchers working in growth and yield modeling.




Hitting the Wall


Book Description

Hitting the Wall examines the combination of two intractable energy problems of our age: the peaking of global oil production and the overloading of the atmosphere with greenhouse gases. Both emerge from the overconsumption of fossil fuels and solving one problem helps solve the other. The misinformation campaign about climate change is discussed as is the role that noncarbon energy solutions can play. There are nine major components in the proposed noncarbon strategy including energy efficiency and renewable energy. Economics and realistic restraints are considered and the total carbon reduction by 2030 is evaluated, and the results show that this strategy will reduce the carbon emission in the United States to be on track to an 80% reduction in 2050. The prospects for “clean” coal and “acceptable” nuclear are considered, and there is some hope that they would be used in an interim role. Although there are significant technical challenges to assembling these new energy systems, the primary difficulty lies in the political arena. A multigenerational strategy is needed to guide our actions over the next century. Garnering long-term multiadministration coherent policies to put the elements of any proposed strategy in place, is a relatively rare occurrence in the United States. More common is the reversal of one policy by the next administration with counterproductive results. A framework for politically stable action is developed using the framework of “energy tribes” where all the disparate voices in the energy debate are included and considered in a “messy process.” This book provides hope that our descendants in the next century will live in a world that would be familiar to us. This can only be achieved if the United States plays an active leadership role in maintaining climatic balance. Table of Contents: Introduction / The End of Cheap Oil / Carbon - Too Much of a Good Thing / Carbonless Energy Options / Conventional Energy / Policy for Whom? / Call to Arms / References




Clean Energy, Climate and Carbon


Book Description

With the general reader in mind, Clean Energy, Climate and Carbon outlines the global challenge of decreasing greenhouse gas emissions. It covers the changing concentration of atmospheric carbon dioxide through time and its causes, before considering the promise and the limitations of a wide range of energy technologies for decreasing carbon dioxide emissions. Despite the need to decrease carbon dioxide, the fact is that the global use of fossil fuels is increasing and is likely to continue to do so for some decades to come. With this in mind, the book considers in detail, what for many people is the unfamiliar clean energy technology of carbon capture and storage (CCS). How can we capture carbon dioxide from flue gases? How do we transport it? How do we store it in suitable rocks? What are suitable rocks and where do we find them? How do we know the carbon dioxide will remain trapped once it is injected underground? What does CCS cost and how do those costs compare with other technology options? The book also explores the political environment in which the discussion on clean energy technology options is occurring. What will a price on carbon do for technology uptake and what are the prospects of cutting our emissions by 2020 and of making even deeper cuts by 2050? What will the technology mix look like by that time? For people who are concerned about climate change, or who want to learn more about clean energy technologies, including CCS, this is the definitive view of the opportunities and the challenges we face in decreasing emissions despite a seemingly inexorable global increase in energy demand.