Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications


Book Description

Thanks to their outstanding hydrogen selectivity, palladium membranes have attracted extensive R&D interest. They are a potential breakthrough technology for hydrogen production and also have promising applications in the areas of thermochemical biorefining. This book summarises key research in palladium membrane technologies, with particular focus on the scale-up challenges. After an introductory chapter, Part one reviews the fabrication of palladium membranes. Part two then focuses on palladium membrane module and reactor design. The final part of the book reviews the operation of palladium membranes for synthesis gas/hydrogen production, carbon capture and other applications. - Review of manufacture and design issues for palladium membranes - Discussion of the applications of palladium membrane technology, including solar steam reforming, IGCC plants, NGCC plants, CHP plants and hydrogen production - Examples of the technology in operation




Carbon Membrane Technology


Book Description

Carbon membranes have great advantages of strong mechanical strength and high chemical stabilities, as well as high separation performance to reach the industrial attractive region. Further improvement on membrane performance can potentially offset the relatively high production cost compared to polymeric membranes. However, there are still some challenges related to fabrication of asymmetric carbon membranes, the controlling of structure and pore-size and module up-scaling for commercial application. The aim of this book is to provide the fundamentals on carbon membrane materials for the young researchers and engineers to develop frontier membrane materials for energy efficient separation process. This book describes the status and perspectives of both self-supported and supported carbon membranes from fundamentals to applications. The key steps on the development of high performance carbon membranes including precursor selection, tuning carbon membrane structure and regeneration are discussed. In the end, different potential applications both in gas and liquids separation are well described, and the future directions for carbon membrane development were pointed out. To this end, membrane science and engineering are set to play crucial roles as enabling technologies to provide energy efficient and cost-effective future solutions for energy and environment related processes. Based on this approach the research projects which are trying to find attractive carbon materials in our days are many. The published papers, per year, in the topic of carbon membranes, especially for biogas upgrading, natural gas sweetening and hydrogen purification, are numerous with very high impact. However, only few are the books which include relevant to the topic of carbon membrane technology. This book offers the condensed and interdisciplinary knowledge on carbon membranes, and provides the opportunity to the scientists who are working in the field of carbon membrane technology for gas and liquid separations to present, share, and discuss their contributions within the membrane community.




Membrane Contactor Technology


Book Description

An eye-opening exploration of membrane contactors from a group of industry leaders In Membrane Contactor Technology: Water Treatment, Food Processing, Gas Separation, and Carbon Capture, an expert team of researchers delivers an up-to-date and insightful explanation of membrane contactor technology, including transport phenomena, design aspects, and diverse process applications. The book also includes explorations of membrane synthesis, process, and module design, as well as rarely discussed process modeling and simulation techniques. The authors discuss the technical and economic aspects of this increasingly important technology and examine the geometry, flow, energy and mass transport, and design aspects of membrane contactor modules. They also cover a wide range of application opportunities for this technology, from the materials sciences to process engineering. Membrane Contactor Technology also includes: A thorough introduction to the membrane contactor extraction process, including dispersion-free membrane extraction processes and supported liquid membrane processes Comprehensive explorations of membrane transport theory, including discussions of diffusional mass and heat transfer modeling, as well as numerical modeling In-depth examinations of module configuration and geometry, including design and flow configuration Practical discussions of modes or operation, including membrane distillation, osmotic evaporation, and forward osmosis Perfect for process engineers, biotechnologists, water chemists, and membrane scientists, Membrane Contactor Technology also belongs in the libraries of chemical engineers, polymer chemists, and chemists working in the environmental industry.




Recent Advances in Carbon Capture and Storage


Book Description

Carbon capture and storage (CCS) has been considered as a practical way in sequestering the huge anthropogenic CO2 amount with a reasonable cost until a more pragmatic solution appears. The CCS can work as a bridge before fulfilling the no-CO2 era of the future by applying to large-scale CO2 emitting facilities. But CCS appears to lose some passion by the lack of progress in technical developments and in commercial success stories other than EOR. This is the time to go back to basics, starting from finding a solution in small steps. The CCS technology desperately needs far newer ideas and breakthroughs that can overcome earlier attempts through improving, modifying, and switching the known principles. This book tries to give some insight into developing an urgently needed technical breakthrough through the recent advances in CCS research, in addition to the available small steps like soil carbon sequestration. This book provides the fundamental and practical information for researchers and graduate students who want to review the current technical status and to bring in new ideas to the conventional CCS technologies.




Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications


Book Description

Progress in membrane materials, selective membrane design, and computer modeling and simulation have contributed greatly to the application of advanced membranes in conventional and alternative power sectors, as well as to clean industry applications. This book presents a comprehensive review of membrane science and technology.




Advanced CO2 Capture Technologies


Book Description

This book summarises the advanced CO2 capture technologies that can be used to reduce greenhouse gas emissions, especially those from large-scale sources, such as power-generation and steel-making plants. Focusing on the fundamental chemistry and chemical processes, as well as advanced technologies, including absorption and adsorption, it also discusses other aspects of the major CO2 capture methods: membrane separation; the basic chemistry and process for CO2 capture; the development of materials and processes; and practical applications, based on the authors’ R&D experience. This book serves as a valuable reference resource for researchers, teachers and students interested in CO2 problems, providing essential information on how to capture CO2 from various types of gases efficiently. It is also of interest to practitioners and academics, as it discusses the performance of the latest technologies applied in large-scale emission sources.




Membrane Technology and Applications


Book Description

Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.




Membrane Engineering


Book Description

Modern membrane science and technology aids engineers in developing and designing more efficient and environmentally-friendly processes. The optimal material and membrane selection as well as applications in the many involved industries are provided. This work is the ideal introduction for engineers working in membrane science and applications (wastewater, desalination, adsorption, and catalysis), process engineers in separation science, biologists and biochemists, environmental scientists, and most of all students. Its multidisciplinary approach also stimulates thinking of hybrid technologies for current and future life-saving applications (artificial organs, drug delivery).




Sustainable Membrane Technology for Energy, Water, and Environment


Book Description

A detailed look at the most recent developments in sustainable membrane technology for use in energy, water, and the environment A collection of twenty-seven groundbreaking papers on important ideas about the development of membrane science and technology, Sustainable Membrane Technology for Energy, Water, and Environment brings together contributions from leading international experts in one comprehensive volume. Covering the latest developments and most innovative ideas in the field, this book is a unique resource for understanding the growing interest in using membranes across several industries. Divided into six chapters that cover new membrane materials and membrane development; membrane applications for gas and vapor separation; membrane applications in water treatment; environmental applications of membranes; energy applications of membranes; and other industrial membrane applications, the book looks at the current and emerging applications for membrane science and technology in detail. As the Association of Southeast Asian Nations (ASEAN) and the Middle East emerge as the next generation of membrane research and development centers, in part due to their need for water and natural gas production technology, this book provides invaluable insights into the cutting-edge work taking place in these regions. Additional topics covered also include new membrane materials, membrane applications for food processing, and much more. Designed for engineers, scientists, professors, and graduate students who are engaged in membrane R&D activities, as well as for anyone interested in sustainable development, Sustainable Membrane Technology for Energy, Water, and Environment is a cutting-edge look at membrane applications.




Membrane Technology


Book Description

Membrane Technology - a clean and energy saving alternative to traditional/conventional processes. Developed from a useful laboratory technique to a commercial separation technology, today it has widespread and rapidly expanding use in the chemical industry. It has established applications in areas such as hydrogen separation and recovery of organic vapors from process gas streams, and selective transport of organic solvents, and it is opening new perspectives for catalytic conversion in membrane reactors. Membrane technology provides a unique solution for industrial waste treatment and for controlled production of valuable chemicals. This book outlines several established applications of membranes in the chemical industry, reviews the available membranes and membrane processes for the field, and discusses the huge potential of this technology in chemical processes. Each chapter has been written by an international leading expert with extensive industrial experience in the field.