Carbon Nanotubes for Biomedical Applications


Book Description

This book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.




Carbon Nanomaterials for Biological and Medical Applications


Book Description

Nanomaterials for Biological and Medical Applications explores the different applications of carbon nanomaterials in drug and gene therapies and their use in tissue regeneration, biosensor diagnosis, enantiomer separation of chiral drugs, extraction and analysis of drugs and pollutants, and as antitoxents. The book describes the synthesis processing of carbon nanomaterials, carbon composite nanomaterials, and their different biological and biomedical applications, including the removal of biologically toxic materials, optical biosensor applications, bio-imaging probe, drug delivery, cancer treatments, and other biomedical applications. Explains the major synthesis chemical process of carbon nanomaterials for biological applications Discusses how carbon nanomaterials can be practically used to create more efficient nanodevices in biosensing, medical imaging, and drug delivery Explores how the unique physical properties of carbon nanomaterials allows them to remove biologically toxic materials




Carbon Nanomaterials for Biomedical Applications


Book Description

This book covers a wide range of topics relating to carbon nanomaterials, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive chemical, physical, optical, and even magnetic properties for various applications, considerable effort has been made to employ carbon nanomaterials (e.g., fullerenes, carbon nanotubes, graphene, nanodiamond) as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Tremendous progress has been made and the scattered literature continues to grow rapidly. With chapters by world-renowned experts providing an overview of the state of the science as well as an understanding of the challenges that lie ahead, Carbon Nanomaterials for Biomedical Applications is essential reading not only for experienced scientists and engineers in biomedical and nanomaterials areas, but also for graduate students and advanced undergraduates in materials science and engineering, chemistry, and biology.




Nanomaterials for Medical Applications


Book Description

Structurally the work is demarcated into the six most popular areas of research: (1) biocompatibility of nanomaterials with living organisms in their various manifestations (2) nanobiosensors for clinical diagnostics, detecting biomolecules which are useful in the clinical diagnosis of genetic, metabolically acquired, induced or infectious disease (3) targeted drug delivery for nanomaterials in their various modifications (4) nanomedical devices and structures which are used in the development of implantable medical devices and structures such as nanorobots (5) nanopharmacology, as novel nanoparticles are increasingly engineered to diagnose conditions and recognize pathogens, identify ideal pharmaceutical agents to treat the condition or pathogens, fuel high-yield production of matched pharmaceuticals (potentially in vivo), locate, attach or enter target tissue,




Carbon Nanomaterials for Bioimaging, Bioanalysis, and Therapy


Book Description

A comprehensive reference on biochemistry, bioimaging, bioanalysis, and therapeutic applications of carbon nanomaterials Carbon nanomaterials have been widely applied for biomedical applications in the past few decades, because of their unique physical properties, versatile functionalization chemistry, and biological compatibility. This book provides background knowledge at the entry level into the biomedical applications of carbon nanomaterials, focusing on three applications: bioimaging, bioanalysis, and therapy. Carbon Nanomaterials for Bioimaging, Bioanalysis and Therapy begins with a general introduction to carbon nanomaterials for biomedical applications, including a discussion about the pros and cons of various carbon nanomaterials for the respective therapeutic applications. It then goes on to cover fluorescence imaging; deep tissue imaging; photoacoustic imaging; pre-clinical/clinical bioimaging applications; carbon nanomaterial sensors for cancer and disease diagnosis; targeted cancer therapy; and photothermal/photodynamic therapy. Each chapter briefly introduces the biomedical application and emphasizes the most appropriate carbon nanomaterial(s) for the application. Provides an introduction to the biomedical applications of carbon nanomaterials for early-career scientists, as well as background and context for mid-career scientists and researchers Contains four sections covering biochemistry, bioimaging, bioanalysis, and therapeutic applications of carbon nanomaterials Presented by experts who have strong background in the field of nanotechnology for biomedical applications Covers a hot area of research which has very unique physical properties, versatile functionalization chemistry, and biological compatibility Carbon Nanomaterials for Bioimaging, Bioanalysis and Therapy is an excellent resource for academic researchers and industrial scientists working on preparation and bio-application of carbon nanomaterials, biomedical engineering, and nanotechnology.




Carbon Nanotubes


Book Description

Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O’Connell, protégé of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth of “peapod” structures. Coverage then moves to electronic properties and band structures of single-wall nanotubes (SWNTs), magnetic properties, Raman spectroscopy of electronic and chemical behavior, and electromechanical properties and applications in NEMS (nanoelectromechanical systems). Turning to applications, the final sections of the book explore mechanical properties of SWNTs spun into fibers, sidewall functionalization in composites, and using SWNTs as tips for scanning probe microscopes. Taking a fresh look at this burgeoning field, Carbon Nanotubes: Properties and Applications points the way toward making CNTs commercially viable.




Safety of Nanoparticles


Book Description

In spite of the potential use of nanomaterials as tissue engineering devices, implants, biosensors, drug delivery devices, etc., there has yet to be a compilation of the risks associated with the in vivo use of nanomaterials. There are numerous and well-known risks because of the size of nanoparticles. For example, nanoparticles can cross cell membranes and enter the cytoplasm undetected. The aim of this book is to provide one of the first (if not the first) detailed views of how cells and tissues in the body deal with nanoparticles. This is important not only for implantable devices, but also for the manufacturing of nanophase materials when particles can be inhaled or enter the body through the skin. Only by compiling research at the intersection of nanoparticles and biological processes can we determine if nanophase materials are safe to be manufactured, handled, and/or implanted for various medical applications.




Biomedical Applications and Toxicology of Carbon Nanomaterials


Book Description

An overview of biomedical applications and the toxicity properties of carbon nanomaterials aimed at helping to avoid detrimental health effects while laying the groundwork for further research in this highly relevant field. Summarizing recent research, the book starts with the synthesis and functionalization of carbon nanomaterials, as well as identification and detection in biosystems. It then moves on to the interaction between carbon nanoparticles and biocomponents, focusing on the toxicity and mechanisms to various organs and systems and potential biomedical applications as well. Each section highlights the challenges, outlines unanswered questions, and suggests directions for further research and development efforts.




Functionalized Carbon Nanomaterials for Theranostic Applications


Book Description

Functionalized Carbon Nanomaterials for Theranostic Applications offers insights into the developments and trends that are progressing fast in the field of functionalized carbon nanomaterials-based devices as diagnostic tools for early stage detection of human diseases. The book provides information on how functionalized carbon nanomaterials are being used as the basis for products, such as early disease diagnostic kits, quantum dots for medical imaging and a growing list of other applications. Sections cover different mechanical, absorption, optical and electrical properties than those found in original nanomaterials. This is an important reference source that will be valuable to materials scientists, biomedical engineers and pharmaceutical scientists who are looking to increase their understanding on how functionalized carbon nanomaterials are being used for a variety of theranostic applications. Provides readers with information on how to develop functionalized carbon nanomaterials based diagnostic devices and tools Identifies fabrication and characterization methods for integrated devices for use in theranostic applications Assesses major challenges for manufacturing functionalized carbon nanomaterial materials for theranostic devices on an industrial scale




Nanomaterials for Application in Medicine and Biology


Book Description

This book unites the multi-faceted work of international scientists from various domains as they cooperate to present the role of nanomaterials in modern medicine with particular emphasis on cell growth, manipulation, and modification. Not only does this book provide the reader with the necessary theoretical background information, it also gives valuable experimental data, allowing for an exact comprehension and observation of the relevance of this modern technology.