Carbon Nanomaterials in Biomedicine and the Environment


Book Description

Carbon nanomaterials possess special physical and chemical properties. As adsorbents, they are widely used for the purification of water and other liquids, recovery of valuable substances from liquid and gaseous media, and oil refining and also in petrochemical, wine, oil and fat, and other industries. They can be used in medicine, both for the creation of hemosorption systems that are capable of performing specific purification of blood and other physiological fluids, including removal of various exo- and endotoxicants, and for the construction of highly effective adsorbed probiotics. The creation of nanostructured carbon-containing materials is one of many rapidly developing research fields and also the theme of this book. The book focuses on the recent developments in the synthesis of nanostructured carbon multifunctional sorbents and covers topics such as fusicoccin compounds as anticancer agents, entero- and vulnerosorption, and blood purification. It will be useful for scientists, chemical industry specialists, professors, and master’s and PhD students of chemical, physical, and biological sciences.




Carbon Nanomaterials in Biomedicine and the Environment


Book Description

Carbon nanomaterials possess special physical and chemical properties. As adsorbents, they are widely used for the purification of water and other liquids, recovery of valuable substances from liquid and gaseous media, and oil refining and also in petrochemical, wine, oil and fat, and other industries. They can be used in medicine, both for the creation of hemosorption systems that are capable of performing specific purification of blood and other physiological fluids, including removal of various exo- and endotoxicants, and for the construction of highly effective adsorbed probiotics. The creation of nanostructured carbon-containing materials is one of many rapidly developing research fields and also the theme of this book. The book focuses on the recent developments in the synthesis of nanostructured carbon multifunctional sorbents and covers topics such as fusicoccin compounds as anticancer agents, entero- and vulnerosorption, and blood purification. It will be useful for scientists, chemical industry specialists, professors, and master’s and PhD students of chemical, physical, and biological sciences.




Handbook of Carbon-Based Nanomaterials


Book Description

Handbook of Carbon-Based Nanomaterials provides a comprehensive overview of carbon-based nanomaterials and recent advances in these specialized materials. This book opens with a brief introduction to carbon, including the different forms of carbon and their range of uses. Each chapter systematically covers a different type of carbon-based nanomaterial, including its individual characteristics, synthesis techniques and applications in industry, biomedicine and research. This book offers a broad handbook on carbon-based nanomaterials, detailing the materials aspects, applications and recent advances of this expansive topic. With its global team of contributing authors, Handbook of Carbon-Based Nanomaterials collates specific technical expertise from around the world, for each type of carbon-based nanomaterial. Due to the broad nature of the coverage, this book will be useful to an interdisciplinary readership, including researchers in academia and industry in the fields of materials science, engineering, chemistry, energy and biomedical engineering. - Covers a range of carbon-based nanomaterials, including graphene, fullerenes and much more - Describes key properties, synthesis techniques and characterization of each carbon-based nanomaterial - Discusses a range of applications of carbon-based nanomaterials, from biomedicine to energy applications




Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications


Book Description

This book presents a summary of the current use of carbon nanomaterials for water treatment, drug delivery, systems and nanosensors. The first chapter elucidates the adsorption process phenomenon. Also, the properties of different carbon nanomaterials for adsorption applications are covered. The third chapter presents the kinetic and equilibrium models of adsorption, processing of experimental data and adsorption process peculiarities. Environmental and biological applications of carbon nanomaterials are listed in the last chapter. This book is written from an application-oriented perspective and is useful for all those interested in nanoadsorbents.




Carbon Nanotubes for Biomedical Applications


Book Description

This book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.




Carbon Nanomaterials for Agri-food and Environmental Applications


Book Description

Carbon Nanomaterials for Agri-food and Environmental Applications discusses the characterization, processing and applications of carbon-based nanostructured materials in the agricultural and environmental sectors. Sections discuss the synthesis and characterization of carbon nanotubes, the technological developments in environmental applications of carbon-based nanomaterials, and agri-food applications. The book also covers the toxic effects of engineered carbon nanoparticles on the environment, and in plants and animals. Finally, quality control and risk management are addressed to assess health and environmental risks. This is an applicable book for graduate students, researchers and those in industrial sectors of science and technology who want to learn more about carbon nanomaterials.




Bio-Applications of Nanoparticles


Book Description

This edited book highlights the central players in the Bionanotechnology field - which are the nanostructures and biomolecules. It provides broad examples of current developments in Bionanotechnology research and is an excellent introduction to the field. The book describes how nanostructures are synthesized and details the wide variety of nanostructures available for biological research and applications. Examples of the unique properties of nanostructures are provided along with the current applications of these nanostructures in biology and medicine. The final chapters of the book describe the toxicity of nanostructures.




Carbon-Based Material for Environmental Protection and Remediation


Book Description

Carbon-Based Material for Environmental Protection and Remediation presents an overview of carbon-based technologies and processes, and examines their usefulness and efficiency for environmental preservation and remediation. Chapters cover topics ranging from pollutants removal to new processes in materials science. Written for interested readers with strong scientific and technological backgrounds, this book will appeal to scientific advisors at private companies, academics, and graduate students.




Green Nanoparticles


Book Description

Nanotechnology is the application of science to control matter at the molecular level. It has become one of the most promising applied technologies in all areas of science. Nanoparticles have multi-functional properties and have created very interesting applications in various fields such as medicine, nutrition, bioenergy, agriculture and the environment. But the biogenic syntheses of monodispersed nanoparticles with specific sizes and shapes have been a challenge in biomaterial science. Nanoparticles are of great interest due to their extremely small size and large surface-to-volume ratio, which lead to both chemical and physical differences in their properties (e.g., mechanical properties, biological and sterical properties, catalytic activity, thermal and electrical conductivity, optical absorption and melting point) compared to bulk of the same chemical composition. Recently, however, synthesizing metal nanoparticles using green technology via microorganisms, plants, viruses, and so on, has been extensively studied and has become recognized as a green and efficient way for further exploiting biological systems as convenient nanofactories. Thus the biological synthesis of nanoparticles is increasingly regarded as a rapid, ecofriendly, and easily scaled-up technology. Today researchers are developing new techniques and materials using nanotechnology that may be suitable for plants to boost their native functions. Recently, biological nanoparticles were found to be more pharmacologically active than physico-chemically synthesized nanoparticles. Various applications of biosynthesized nanoparticles have been discovered, especially in the field of biomedical research, such as applications to specific delivery of drugs, use for tumor detection, angiogenesis, genetic disease and genetic disorder diagnosis, photoimaging, and photothermal therapy. Further, iron oxide nanoparticles have been applied to cancer therapy, hyperthermia, drug delivery, tissue repair, cell labeling, targeting and immunoassays, detoxification of biological fluids, magnetic resonance imaging, and magnetically responsive drug delivery therapy. Nanoparticle synthesis for plant byproducts for biomedical applications has vast potential. This book offers researchers in plant science and biomedicine the latest research and opportunity to develop new tools for the synthesis of environmentally friendly and cost-effective nanoparticles for applications in biomedicine as well as other various fields.




Nanomaterials and Their Biomedical Applications


Book Description

This book highlights the evolution of, and novel challenges currently facing, nanomaterials science, nanoengineering, and nanotechnology, and their applications and development in the biological and biomedical fields. It details different nanoscale and nanostructured materials syntheses, processing, characterization, and applications, and considers improvements that can be made in nanostructured materials with their different biomedical applications. The book also briefly covers the state of the art of different nanomaterials design, synthesis, fabrication and their potential biomedical applications. It will be particularly useful for reading and research purposes, especially for science and engineering students, academics, and industrial researchers.