Cartesian Spacetime


Book Description

Although Descartes' natural philosophy marked an advance in the development of modern science, many critics over the years, such as Newton, have rejected his particular `relational' theory of space and motion. Nevertheless, it is also true that most historians and philosophers have not sufficiently investigated the viability of the Cartesian theory. This book explores, consequently, the success of the arguments against Descartes' theory of space and motion by determining if it is possible to formulate a version that can eliminate its alleged problems. In essence, this book comprises the first sustained attempt to construct a consistent `Cartesian' spacetime theory: that is, a theory of space and time that consistently incorporates Descartes' various physical and metaphysical concepts. Intended for students in the history of philosophy and science, this study reveals the sophisticated insights, and often quite successful elements, in Descartes' unjustly neglected relational theory of space and motion.




Relativity and the Nature of Spacetime


Book Description

Puts the emphasis on conceptual questions: Why is there no such thing as absolute motion? What is the physical meaning of relativity of simultaneity? But, the most important question that is addressed in this book is "what is the nature of spacetime?" or, equivalently, "what is the dimensionality of the world at the macroscopic level?" Develops answers to these questions via a thorough analysis of relativistic effects and explicitly asking whether the objects involved in those effects are three-dimensional or four-dimensional. Discusses the implication of the result (this analysis clearly shows that if the world and the physical objects were three-dimensional, none of the kinematic relativistic effects and the experimental evidence supporting them would be possible) for physics, philosophy, and our entire world view are discussed.




Relativity without Spacetime


Book Description

In 1908, three years after Einstein first published his special theory of relativity, the mathematician Hermann Minkowski introduced his four-dimensional “spacetime” interpretation of the theory. Einstein initially dismissed Minkowski’s theory, remarking that “since the mathematicians have invaded the theory of relativity I do not understand it myself anymore.” Yet Minkowski’s theory soon found wide acceptance among physicists, including eventually Einstein himself, whose conversion to Minkowski’s way of thinking was engendered by the realization that he could profitably employ it for the formulation of his new theory of gravity. The validity of Minkowski’s mathematical “merging” of space and time has rarely been questioned by either physicists or philosophers since Einstein incorporated it into his theory of gravity. Physicists often employ Minkowski spacetime with little regard to the whether it provides a true account of the physical world as opposed to a useful mathematical tool in the theory of relativity. Philosophers sometimes treat the philosophy of space and time as if it were a mere appendix to Minkowski’s theory. In this critical study, Joseph Cosgrove subjects the concept of spacetime to a comprehensive examination and concludes that Einstein’s initial assessment of Minkowksi was essentially correct.




Space, Time, and Spacetime


Book Description

In this book, Lawrence Sklar demonstrates the interdependence of science and philosophy by examining a number of crucial problems on the nature of space and time—problems that require for their resolution the resources of philosophy and of physics. The overall issues explored are our knowledge of the geometry of the world, the existence of spacetime as an entity over and above the material objects of the world, the relation between temporal order and causal order, and the problem of the direction of time. Without neglecting the most subtle philosophical points or the most advanced contributions of contemporary physics, the author has taken pains to make his explorations intelligible to the reader with no advanced training in physics, mathematics, or philosophy. The arguments are set forth step-by-step, beginning from first principles; and the philosophical discussions are supplemented in detail by nontechnical expositions of crucial features of physical theories.




An Introduction to Covariant Quantum Mechanics


Book Description

This book deals with an original contribution to the hypothetical missing link unifying the two fundamental branches of physics born in the twentieth century, General Relativity and Quantum Mechanics. Namely, the book is devoted to a review of a "covariant approach" to Quantum Mechanics, along with several improvements and new results with respect to the previous related literature. The first part of the book deals with a covariant formulation of Galilean Classical Mechanics, which stands as a suitable background for covariant Quantum Mechanics. The second part deals with an introduction to covariant Quantum Mechanics. Further, in order to show how the presented covariant approach works in the framework of standard Classical Mechanics and standard Quantum Mechanics, the third part provides a detailed analysis of the standard Galilean space-time, along with three dynamical classical and quantum examples. The appendix accounts for several non-standard mathematical methods widely used in the body of the book.




Images of Time


Book Description

Have you ever wondered about Time: what it is or how to discuss it? If you have, then you may have been bewildered by the many different views and opinions in many diverse fields to be found, such as physics, mathematics, philosophy, religion, history, and science fiction novels and films. This book will help you unravel fact from fiction. It provides a broad survey of many of these views, these images of time, covering historical, cultural, philosophical, biological, mathematical and physical images of time, including classical and quantum mechanics, special and general relativity and cosmology. This book gives you more than just a review of such images. It provides the reader a basis for judging the scientific soundness of these various images. It develops the reader's critical ability to distinguish Images of Time in terms of its contextual completeness. Differentiating between metaphysical images (which cannot be scientifically validated) and those that could, in principle, be put to empirical test. Showing that mathematical and classical mechanical images are more complete, and genuine quantum mechanics based images have the greatest degree of contextual completeness. Through the use of a simple algorithm, the reader can decide the classification of any of the images of time discussed in this book. These distinctions are of particular importance in this day and age, when we are flooded by a plethora of competing Images of Time. Many of these have no scientific basis or empirical support or content. This book will be of value not only to philosophers, scientists and students, but also to the general reader interested in this fundamental topic, because it introduces a method of distinguishing between science fiction and science fact.




Relational Passage of Time


Book Description

This book defends a relational theory of the passage of time. The realist view of passage developed in this book differs from the robust, substantivalist position. According to relationism, passage is nothing over and above the succession of events, one thing coming after another. Causally related events are temporally arranged as they happen one after another along observers’ worldlines. There is no unique global passage but a multiplicity of local passages of time. After setting out this positive argument for relationism, the author deals with five common objections to it: (a) triviality of deflationary passage, (b) a-directionality of passage, (c) the impossibility of experiencing passage, (d) fictionalism about passage, and (e) the incompatibility of passage with perduring objects. Relational Passage of Time will appeal to scholars and advanced students working in philosophy of time, metaphysics, and philosophy of physics.




The Oxford Handbook of Philosophy in Early Modern Europe


Book Description

A team of leading scholars survey the development of philosophy in the period of extraordinary intellectual change from the mid-16th century to the early 18th century. They cover metaphysics and natural philosophy; the mind, the passions, and aesthetics; epistemology, logic, mathematics, and language; ethics and political philosophy; and religion.




Analytical and Numerical Approaches to Mathematical Relativity


Book Description

General relativity ranks among the most accurately tested fundamental theories in all of physics. Deficiencies in mathematical and conceptual understanding still exist, hampering further progress. This book collects surveys by experts in mathematical relativity writing about the current status of, and problems in, their fields. There are four contributions for each of the following mathematical areas: differential geometry and differential topology, analytical methods and differential equations, and numerical methods.




Relativity and Geometry


Book Description

Relativity and Geometry aims to elucidate the motivation and significance of the changes in physical geometry brought about by Einstein, in both the first and the second phases of relativity. The book contains seven chapters and a mathematical appendix. The first two chapters review a historical background of relativity. Chapter 3 centers on Einstein's first Relativity paper of 1905. Subsequent chapter presents the Minkowskian formulation of special relativity. Chapters 5 and 6 deal with Einstein's search for general relativity from 1907 to 1915, as well as some aspects and subsequent developments of the theory. The last chapter explores the concept of simultaneity, geometric conventionalism, and a few other questions concerning space time structure, causality, and time.