Catalysis and Automotive Pollution Control IV


Book Description

In spite of the energy crises and the recession, there has been a global, explosive growth in the amount of motor vehicles. In the past 50 years, the amount has increased from 50 to 700 million vehicles. For economical reasons they will probably continue to be used for a considerable number of years, despite the poor yield of internal combustion engines resulting in the inevitable production of some gaseous pollutants. The subsequent increase of gaseous pollutants in our atmosphere caused by exhaust gas from automobiles has enhanced the problem of the elimination of these pollutants produced by internal combustion engines. Catalysis has proven to be the best solution to lower the content of exhaust gas in pollutants.As its predecessors, CAPoC4 proved to be a suitable platform for discussing technological improvements and developments along with future perspectives and challenges. In the light of new results and further legislative regulations, the following topics were intensely discussed: *low light-off behaviour based on improved catalysts and substrate formulations *efficient adsorber systems for storage of hydrocarbon emissions *electrically heated catalyst systems ahead the main catalyst or, alternatively, close coupled catalysts (at the manifold of the engine) • lean DeNOx catalysts allowing for decomposition of NOx in the oxygen-rich exhaust of direct injection gasoline engines and high speed injection diesel engines or, alternatively, NOx trapping/reduction in a hybrid approach * collection and destruction of dry particulates or soot.There is no doubt that clean vehicle technology is a vital part of improving air quality. Challenges remain and call for technological answers. Catalytic air pollution control is still an area providing a considerable incentive for innovative work.




Catalysis and Automotive Pollution Control IV


Book Description

In spite of the energy crises and the recession, there has been a global, explosive growth in the amount of motor vehicles. In the past 50 years, the amount has increased from 50 to 700 million vehicles. For economical reasons they will probably continue to be used for a considerable number of years, despite the poor yield of internal combustion engines resulting in the inevitable production of some gaseous pollutants. The subsequent increase of gaseous pollutants in our atmosphere caused by exhaust gas from automobiles has enhanced the problem of the elimination of these pollutants produced by internal combustion engines. Catalysis has proven to be the best solution to lower the content of exhaust gas in pollutants. As its predecessors, CAPoC4 proved to be a suitable platform for discussing technological improvements and developments along with future perspectives and challenges. In the light of new results and further legislative regulations, the following topics were intensely discussed: *low light-off behaviour based on improved catalysts and substrate formulations*efficient adsorber systems for storage of hydrocarbon emissions*electrically heated catalyst systems ahead the main catalyst or, alternatively, close coupled catalysts (at the manifold of the engine). lean DeNOx catalysts allowing for decomposition of NOx in the oxygen-rich exhaust of direct injection gasoline engines and high speed injection diesel engines or, alternatively, NOx trapping/reduction in a hybrid approach* collection and destruction of dry particulates or soot. There is no doubt that clean vehicle technology is a vital part of improving air quality. Challenges remain and call for technological answers. Catalytic air pollution control is still an area providing a considerable incentive for innovative work.




Catalysis and Automotive Pollution Control III


Book Description

These proceedings are based on the third of a series of symposia devoted to the use of catalysis for the depollution of exhaust gases of motor vehicles. Although catalysts have been used for this purpose for some thirty years, the subject is still very topical because of its economic impact. The increasing number of submitted, accepted and published papers amply attests to this fact.




Catalysis and Automotive Pollution Control II


Book Description

This volume constitutes the proceedings of the second symposium on Catalysis and Automotive Pollution Control. CAPoC 2 was a great success from the point of view of its scientific interest, as evidenced by the content of this book, and also from the high participation, some 260 scientists. About two-thirds of the contributors came from the industrial world, mainly the car and oil industries and catalyst manufacturers. This is ample proof that exhaust catalysis remains a major topic of interest. The first part of the book is a general introduction to the problem of automotive pollution. The second, strictly catalytic, part is devoted to fundamental and applied studies on pollution control, with emphasis on exhaust catalytic converters.




Catalytic Air Pollution Control


Book Description

Catalytic Air Pollution Control: Commercial Technology is the primary source for commercial catalytic air pollution control technology, offering engineers a comprehensive account of all modern catalytic technology. This Third Edition covers all the new advances in technology in automotive catalyst control technology, diesel engine catalyst control technology, small engine catalyst control technology, and alternate sustainable fuels for auto and diesel.




Catalysis and Automotive Pollution Control


Book Description

In June 1984 the EEC Commission proposed new standards of permissible exhaust gas from motor vehicles to be introduced in Europe; these standards were approved by the Ministers of the Environment one year later. As the control of automotive pollution is at present mainly a catalytic problem, it was decided to hold an International Symposium on the subject, and an organizing committee composed of people engaged in catalytic research in the different Belgian Universities was constituted. This was the first Symposium of its kind to be held on an international level, and the quality and scientific interest of the papers presented was exceptional. It is planned to hold a follow-up Symposium in 2 to 3 years' time.The first part of the book is a general introduction to the problem of automotive pollution. The second, properly catalytic, part is devoted to fundamental and applied studies on pollution control, with emphasis on exhaust catalytic converters.




Emissions Control Catalysis


Book Description

The important advances achieved over the past years in all technological directions (industry, energy, and health) contributing to human well-being are unfortunately, in many cases, accompanied by a threat to the environment, with photochemical smog, stratospheric ozone depletion, acid rain, global warming, and finally climate change being the most well-known major issues. These are the results of a variety of pollutants emitted through these human activities. The indications show that we are already at a tipping point that might lead to non-linear and sudden environmental change on a global scale. Aiming to tackle these adverse effects in an attempt to mitigate any damage that has already occurred and to ensure that we are heading toward a cleaner (green) and sustainable future, scientists around the world are developing tools and techniques to understand, monitor, protect, and improve the environment. Emissions control catalysis is continuously advancing, providing novel, multifunctional, and optimally promoted using a variety of methods, nano-structured catalytic materials, and strategies (e.g., energy chemicals recycling, cyclic economy) that enable us to effectively control emissions, either of mobile or stationary sources, improving the quality of air (outdoor and indoor) and water and the energy economy. Representative cases include the abatement and/or recycling of CO2, CO, NOx, N2O, NH3, CH4, higher hydrocarbons, volatile organic compounds (VOCs), particulate matter, and specific industrial emissions (e.g., SOx, H2S, dioxins aromatics, and biogas). The “Emissions Control Catalysis” Special Issue has succeeded in collecting 22 high-quality contributions, included in this MDPI open access book, covering recent research progress in a variety of fields relevant to the above topics and/or applications, mainly on: (i) NOx catalytic reduction from cars (i.e., TWC) and industry (SCR) emissions; (ii) CO, CH4, and other hydrocarbons removal, and (iii) CO2 capture/recirculation combining emissions control with added-value chemicals production.




New Trends and Developments in Automotive Industry


Book Description

This book is divided in five main parts (production technology, system production, machinery, design and materials) and tries to show emerging solutions in automotive industry fields related to OEMs and no-OEMs sectors in order to show the vitality of this leading industry for worldwide economies and related important impacts on other industrial sectors and their environmental sub-products.




Catalysis


Book Description

There is an increasing challenge for chemical industry and research institutions to find cost-efficient and environmentally sound methods of converting natural resources into fuels chemicals and energy. Catalysts are essential to these processes and the Catalysis Specialist Periodical Report series serves to highlight major developments in this area. This series provides systematic and detailed reviews of topics of interest to scientists and engineers in the catalysis field. The coverage includes all major areas of heterogeneous and homogeneous catalysis and also specific applications of catalysis such as NOx control kinetics and experimental techniques such as microcalorimetry. Each chapter is compiled by recognised experts within their specialist fields and provides a summary of the current literature. This series will be of interest to all those in academia and industry who need an up-to-date critical analysis and summary of catalysis research and applications. Catalysis will be of interest to anyone working in academia and industry that needs an up-to-date critical analysis and summary of catalysis research and applications. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading experts in their specialist fields, this series is designed to help the chemistry community keep current with the latest developments in their field. Each volume in the series is published either annually or biennially and is a superb reference point for researchers. www.rsc.org/spr




Science and Technology in Catalysis


Book Description

(Selected) -- Plenary Lecures: New Catalysts for Controlled/Living Atom Transfer Radical Polymerization (ATRP; Catalysis and Applications of Gold Nanoparticles -- Oral Presentations: Ionic Liquids as New Solvents and Catalysis for Petrochemical and Refining Processes; High Throughput Experiment on the Investigation of Oxidation Catalysts with Gas Sensor System -- Poster Presentations: Development of a Low-Temperature Dioxin Decomposition Catalyst; Studies on Unique Properties of Polyolefins Prepared with Metallocene Catalyst Systems -- Index.