Catalysis in the Refining of Fischer-Tropsch Syncrude


Book Description

The first book to provide a review of the literature on the catalysis needed to refine syncrude to transportation fuels.




Catalysis in the Refining of Fischer-Tropsch Syncrude


Book Description

Fischer-Tropsch Synthesis (FTS) has been used on a commercial scale for more than eighty years. It was initially developed for strategic reasons because it offered a source of transportation fuels that was independent from crude oil. Unlike crude, Fischer-Tropsch synthetic crude is rich in olefins and oxygenates, while being sulphur and nitrogen free. Consequently, the catalysis involved in refining it is significantly different and only a few catalysts have been developed for the purpose. Until now, an account of this topic has been missing from the literature, despite mounting interest in the technology. This is the first book to provide a review and analysis of the literature (journal and patent) on the catalysis needed to refine syncrude to transportation fuels. It specifically highlights the impact of oxygenates and how oxygenates affect selectivity and deactivation. This aspect is also related to the refining of biomass derived liquids. Topics covered include: dimerisation / oligomerisation, isomerisation / hydroisomerisation, catalytic cracking / hydrocracking and hydrogenation, catalytic reforming, aromatic alkylation, etherification, dehydration, and some oxygenate and wax specific conversions.




Fischer-Tropsch Refining


Book Description

The Fischer-Tropsch process is gaining recognition again due to the world-wide increase in energy needs and decrease in oil availability. The increasing interest in utilizing biomass as a potential renewable feedstock in energy generation is further supporting this development. The book covers the production and refining of Fischer-Tropsch syncrude to fuels and chemicals systematically and comprehensively, presenting a wealth of new knowledge and material. As such, it deals extensively with aspects of engineering, chemistry and catalysis. This handbook and ready reference adopts a fundamental approach, looking at the molecules and their transformation from feed to product. Numerous examples illustrate the possibilities and limitations of Fischer-Tropsch syncrude as feesdstock. Of great interest to everyone interested in refining - not just Fischer-Tropsch specialists. From the Contents: Fischer-Tropsch Facilities and Refineries at a Glance Production of Fischer-Tropsch Syncrude Industrial Fischer-Tropsch Facilities Synthetic Transportation Fuels Refining Technology Refinery Design




Fischer-Tropsch Synthesis, Catalysts, and Catalysis


Book Description

This book is based on a symposium held during the 248th American Chemical Society meeting that focused on use of the Fischer-Tropsch process in producing synthetic fuels. Its contents reflect the four dominant subjects of the meeting: catalyst preparation and activation, catalyst activity and reaction mechanisms, catalyst characterization and related reactions, and topics concerning commercializing the Fischer-Tropsch process. It covers recent developments related to renewable resources and green energy and provides a glimpse of the commercial potential of the Fischer-Tropsch process in synthetic fuel production.




Greener Fischer-Tropsch Processes


Book Description

Greener Fischer-Tropsch Processes How can we use our carbon-based resources in the most responsible manner? How can we most efficiently transform natural gas, coal, or biomass into diesel, jet fuel or gasoline to drive our machines? The Big Questions today are energy-related, and the Fischer-Tropsch process provides industrially tested solutions. This book offers a comprehensive and up-to-date overview of the Fischer-Tropsch process, from the basic science and engineering to commercial issues. It covers industrial, economic, environmental, and fundamental aspects, with a specific focus on “green” concepts such as sustainability, process improvement, waste-reduction, and environmental care. The result is a practical reference for researchers, engineers, and financial analysts working in the energy sector, who are interested in carbon conversion, fuel processing or synthetic fuel technologies. It is also an ideal introductory book on the Fischer-Tropsch process for graduate courses in chemistry and chemical engineering.




Fischer-Tropsch Technology


Book Description

Fischer-Tropsch Technology is a unique book for its state-of-the-art approach to Fischer Tropsch (FT) technology. This book provides an explanation of the basic principles and terminology that are required to understand the application of FT technology. It also contains comprehensive references to patents and previous publications. As the first publication to focus on theory and application, it is a contemporary reference source for students studying chemistry and chemical engineering. Researchers and engineers active in the development of FT technology will also find this book an invaluable source of information. * Is the first publication to cover the theory and application for modern Fischer Tropsch technology * Contains comprehensive knowledge on all aspects relevant to the application of Fischer Tropsch technology* No other publication looks at past, present and future applications




Iron and Cobalt Catalysts


Book Description

Since the turn of the last century when the field of catalysis was born, iron and cobalt have been key players in numerous catalysis processes. These metals, due to their ability to activate CO and CH, haev a major economic impact worldwide. Several industrial processes and synthetic routes use these metals: biomass-to-liquids (BTL), coal-to-liquids (CTL), natural gas-to-liquids (GTL), water-gas-shift, alcohol synthesis, alcohol steam reforming, polymerization processes, cross-coupling reactions, and photocatalyst activated reactions. A vast number of materials are produced from these processes, including oil, lubricants, waxes, diesel and jet fuels, hydrogen (e.g., fuel cell applications), gasoline, rubbers, plastics, alcohols, pharmaceuticals, agrochemicals, feed-stock chemicals, and other alternative materials. However, given the true complexities of the variables involved in these processes, many key mechanistic issues are still not fully defined or understood. This Special Issue of Catalysis will be a collaborative effort to combine current catalysis research on these metals from experimental and theoretical perspectives on both heterogeneous and homogeneous catalysts. We welcome contributions from the catalysis community on catalyst characterization, kinetics, reaction mechanism, reactor development, theoretical modeling, and surface science.




Advances in Fischer-Tropsch Synthesis, Catalysts, and Catalysis


Book Description

Rising oil costs have stimulated significant interest in the Fischer-Tropsch synthesis (FTS) as a method for producing a synthetic petroleum substitute. Drawn from the proceedings at a symposium held during the 236th meeting of the American Chemical Society in Philadelphia in August 2008, Advances in Fischer-Tropsch Synthesis, Catalysts, and Cataly




Metal Nanoparticles for Catalysis


Book Description

Catalysis is a central topic in chemical transformation and energy conversion. Thanks to the spectacular achievements of colloidal chemistry and the synthesis of nanomaterials over the last two decades, there have also been significant advances in nanoparticle catalysis. Catalysis on different metal nanostructures with well-defined structures and composition has been extensively studied. Metal nanocrystals synthesized with colloidal chemistry exhibit different catalytic performances in contrast to metal nanoparticles prepared with impregnation or deposition precipitation. Additionally, theoretical approaches in predicting catalysis performance and understanding catalytic mechanism on these metal nanocatalysts have made significant progress. Metal Nanoparticles for Catalysis is a comprehensive text on catalysis on Nanoparticles, looking at both their synthesis and applications. Chapter topics include nanoreactor catalysis; Pd nanoparticles in C-C coupling reactions; metal salt-based gold nanocatalysts; theoretical insights into metal nanocatalysts; and nanoparticle mediated clock reaction. This book bridges the gap between nanomaterials synthesis and characterization, and catalysis. As such, this text will be a valuable resource for postgraduate students and researchers in these exciting fields.




Catalysis


Book Description

There is an increasing need to find cost-effective and environmentally sound methods of converting natural resources into fuels, chemicals and energy; catalysts are pivotal to such processes. Catalysis highlights major developments in this area. Coverage of this Specialist Periodical Report includes all major areas of heterogeneous catalysis. n each volume, specific areas of current interest are reviewed. Examples of topics include experimental methods, acid/base catalysis, materials synthesis, environmental catalysis, and syngas conversion.