X-ray Absorption Fine Structure for Catalysts and Surfaces


Book Description

X-ray absorption fine structure (XAFS) is a powerful technique in characterization of structures and electronic states of materials in many research fields including, e.g., catalysts, semiconductors, optical ingredients, magnetic materials, and surfaces. This characterization technique could be applied in a static or a dynamic state (in-situ condition). The XAFS can provide information that is not accessible by other techniques for characterization of materials, particularly catalysts and related surfaces. Furthermore, XAFS can provide a molecular-level approach to the study of reaction mechanisms for the understanding of catalysts and development of new catalysts. A number of synchrotron radiation facilities have been planned to be built in Asian countries in addition to the high-brilliant synchrotron radiation facilities under construction in the USA, Europe, and Japan. The applications of XAFS have now expanded to catalytic chemistry and engineering, surface science, organometallic chemistry, materials science, solid-state chemistry, geophysics, etc. This book caters to a wide range of researchers and students working in the domain or related topics.










X-ray Absorption Fine Structure For Catalysts And Surfaces


Book Description

X-ray absorption fine structure (XAFS) is a powerful technique in characterization of structures and electronic states of materials in many research fields including, e.g., catalysts, semiconductors, optical ingredients, magnetic materials, and surfaces. This characterization technique could be applied in a static or a dynamic state (in-situ condition). The XAFS can provide information that is not accessible by other techniques for characterization of materials, particularly catalysts and related surfaces. Furthermore, XAFS can provide a molecular-level approach to the study of reaction mechanisms for the understanding of catalysts and development of new catalysts. A number of synchrotron radiation facilities have been planned to be built in Asian countries in addition to the high-brilliant synchrotron radiation facilities under construction in the USA, Europe, and Japan. The applications of XAFS have now expanded to catalytic chemistry and engineering, surface science, organometallic chemistry, materials science, solid-state chemistry, geophysics, etc. This book caters to a wide range of researchers and students working in the domain or related topics.




In-situ Characterization of Heterogeneous Catalysts


Book Description

HELPS RESEARCHERS DEVELOP NEW CATALYSTS FOR SUSTAINABLE FUEL AND CHEMICAL PRODUCTION Reviewing the latest developments in the field, this book explores the in-situ characterization of heterogeneous catalysts, enabling readers to take full advantage of the sophisticated techniques used to study heterogeneous catalysts and reaction mechanisms. In using these techniques, readers can learn to improve the selectivity and the performance of catalysts and how to prepare catalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts features contributions from leading experts in the field of catalysis. It begins with an introduction to the fundamentals and then covers: Characterization of electronic and structural properties of catalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-ray diffraction, neutron scattering, and pair distribution function analysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates with catalyst surfaces, including infrared spectroscopy, Raman spectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on the structural properties of catalysts with techniques that facilitate the study of surface reactions Throughout the book, detailed examples illustrate how techniques for studying catalysts and reaction mechanisms can be applied to solve a broad range of problems in heterogeneous catalysis. Detailed figures help readers better understand how and why the techniques discussed in the book work. At the end of each chapter, an extensive set of references leads to the primary literature in the field. By explaining step by step modern techniques for the in-situ characterization of heterogeneous catalysts, this book enables chemical scientists and engineers to better understand catalyst behavior and design new catalysts for green, sustainable fuel and chemical production.




XAFS Techniques for Catalysts, Nanomaterials, and Surfaces


Book Description

This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.







Catalyst Characterization


Book Description

to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitive ly expensive. There are few chemical-or oil-based material items in modern society that do not depend in some way on a catalytic stage in their manufacture. Apart from manufacturing processes, catalysis is finding other important and over-increasing uses; for example, successful applications of catalysis in the control ofpollution and its use in environmental control are certain to in crease in the future. The commercial import an ce of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists including chemists, physicists, chemical engineers, and material scientists. Increasing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recentlyas sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 19 50s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth.




X-ray and Neutron Techniques for Nanomaterials Characterization


Book Description

Fifth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about X-ray and Neutron Techniques for Nanomaterials Characterization. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.




In-situ Characterization of Heterogeneous Catalysts


Book Description

Helps researchers develop new catalysts for sustainable fueland chemical production Reviewing the latest developments in the field, this bookexplores the in-situ characterization of heterogeneous catalysts,enabling readers to take full advantage of the sophisticatedtechniques used to study heterogeneous catalysts and reactionmechanisms. In using these techniques, readers can learn to improvethe selectivity and the performance of catalysts and how to preparecatalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts featurescontributions from leading experts in the field of catalysis. Itbegins with an introduction to the fundamentals and thencovers: Characterization of electronic and structural properties ofcatalysts using X-ray absorption fine structure spectroscopy Techniques for structural characterization based on X-raydiffraction, neutron scattering, and pair distribution functionanalysis Microscopy and morphological studies Techniques for studying the interaction of adsorbates withcatalyst surfaces, including infrared spectroscopy, Ramanspectroscopy, EPR, and moderate pressure XPS Integration of techniques that provide information on thestructural properties of catalysts with techniques that facilitatethe study of surface reactions Throughout the book, detailed examples illustrate how techniquesfor studying catalysts and reaction mechanisms can be applied tosolve a broad range of problems in heterogeneous catalysis.Detailed figures help readers better understand how and why thetechniques discussed in the book work. At the end of each chapter,an extensive set of references leads to the primary literature inthe field. By explaining step by step modern techniques for the in-situcharacterization of heterogeneous catalysts, this book enableschemical scientists and engineers to better understand catalystbehavior and design new catalysts for green, sustainable fuel andchemical production.