Catalytic Reductive Carbonylation of Organic Nitro Compounds


Book Description

About eight years ago, the catalytic carbonylation of organic nitro compounds was a research field developed enough to justify a rather long review on this subject. Now, we feel that the scientific results and new achievements in this field, very important even from an industrial point of view, require a book in order to be adequately presented. The competition between the catalytic carbonylation of organic nitro compounds and other chemical routes for the synthesis of a variety of organic compounds has not yet come to an end, but many progresses have been done in the former field. We also like to emphasize that this type of research does not only involve relevant industrial problems to be solved, but it opens a research field where the academic interests (mechanism of the reactions, isolation of the intermediates in the catalytic cycles, synthesis of model compounds and so on) can find a lot of opportunities.




Carbon Monoxide in Organic Synthesis


Book Description

Carbon Monoxide in Organic Synthesis A thoroughly up-to-date overview of carbonylation reactions in the presence of carbon monoxide In Carbon Monoxide in Organic Synthesis: Carbonylation Chemistry, expert researcher and chemist Bartolo Gabriele delivers a robust summary of the most central advances in the field of carbonylation reactions in the presence of carbon monoxide. Beginning with a brief introduction on the importance of carbon monoxide as a building block in modern organic synthesis, the author goes on to describe metal-catalyzed carbonylations utilizing iron, cobalt, nickel, copper, and manganese. Descriptions of palladium, ruthenium, and rhodium-catalyzed reactions follow, as do discussions of metal-free carbonylation processes. The book is organized by metal to make the book useful as a guide for researchers from both academia and industry whose work touches on the direct synthesis of carbonyl compounds, carboxylic acid derivatives, and heterocycles. It aims to stimulate further discoveries in this rapidly developing field. Readers will also enjoy: A thorough introduction to carbonylations promoted by first row transition metal catalysts, including cobalt-catalyzed and nickel-catalyzed carbonylations An exploration of carbonylations promoted by second row transition metal catalysts, including ruthenium-, rhodium-, palladium(0)-, and palladium (II)-catalyzed carbonylations Practical discussions of miscellaneous carbonylation reactions, including carbonylations promoted by third row transition metal catalysts and metal-free carbonylation processes Perfect for catalytic and organic chemists, Carbon Monoxide in Organic Synthesis: Carbonylation Chemistry is also an indispensable resource for chemists working with organometallics and industrial chemists seeking a summary of important processes used to synthesize value-added products.




Chemistry Beyond Chlorine


Book Description

Since the industrial revolution, chlorine remains an iconic molecule even though its production by the electrolysis of sodium chloride is extremely energy intensive. The rationale behind this book is to present useful and industrially relevant examples for alternatives to chlorine in synthesis. This multi-authored volume presents numerous contributions from an international spectrum of authors that demonstrate how to facilitate the development of industrially relevant and implementable breakthrough technologies. This volume will interest individuals working in organic synthesis in industry and academia who are working in Green Chemistry and Sustainable Technologies.




Ruthenium Catalysts and Fine Chemistry


Book Description

With contributions by numerous experts







Chemical, Material and Metallurgical Engineering IV


Book Description

Selected, peer reviewed papers from the 2014 4th International Conference on Chemical, Material and Metallurgical Engineering (ICCMME 2014), December 30-31, 2014, Shenzhen, China




Metal Clusters in Chemistry


Book Description

Metal cluster chemistry is at the cutting edge between molecular and solid-state chemistry and has therefore had a great impact on the researchers working on organic, coordination, and solid-state chemistry, catalysis, physics, and materials science. The development of new sophisticated synthetic techniques has led to enormous progress in the synthesis of this diverse class of compounds. The number of clusters is growing rapidly, since the possible variations in the metal and ligand sphere are numerous. Modern bonding theories, such as the isolobal principle, have allowed a better understanding of the structures and properties of metal clusters, and thus paved the way for the usage of these versatile materials. Catalysis and nanomaterials are just two of the very promising application-oriented fields. Seventy six contributions, written by world experts in this research field, provide extensive coverage of different aspects of cluster chemistry, ranging from synthesis, structure determination, and dynamics to applications. Up-to-date information, including an impressive collection of structural data and illustrations, extensive coverage of the most important publications of the last decade, and many more features make this three-volume set a complete single-source guide for all researchers working in the area of cluster chemistry.




Current Organic Chemistry


Book Description

Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical methods in organic chemistry. Each issue is edited by an appointed Executive Guest Editor.




Aromatic C-nitroso Compounds


Book Description

This book is designed to collect and review the research covering main directions in investigations of aromatic nitroso compounds in last decades, and to present both, the academic aspects of this chemistry, as well as the open field of its applicability. The book is divided in five chapters. The basic structural properties of the nitroso aromatic molecules are described in the first chapter. The second chapter is an overview of the methods of preparations of aromatic nitroso and polynitroso compounds, including classical synthetic methods and some new preparative approaches. The third part deals with the physico-chemical properties of nitroso aromates and azodioxides, its structure, crystallography, quantum chemical calculations, spectroscopy, typical reactions, and especially it is focused on the dimerizations in the solid-state. In the fourth chapter is represented organometallic chemistry of nitroso aromatic molecules and its applications in catalysis. The last part of the book deals with the behavior of this class of compounds in the biological systems, reactions with biomolecules and the use in toxicology.




Industrial Applications of Homogeneous Catalysis


Book Description

Catalysts are now widely used in both laboratory and industrial-scale chemistry. Indeed, it is hard to find any complex synthesis or industrial process that does not, at some stage, utilize a catalytic reaction. The development of homogeneous transition metal catalysts on the laboratory scale has demonstrated that these systems can be far superior to the equivalent heterogeneous systems, at least in terms of selectivity. is an increasing interest in this field of research from both an Thus, there academic and industrial point of view. In connection with the rapid developments in this area, four universities from the E.E.C (Aachen, FRG; Liege, Belgium; Milan, Italy; and Lille, France) have collaborated to organise a series of seminars for high-level students and researchers. These meetings have been sponsored by the Commission of the E.E.C and state organizations. The most recent of these meetings was held in Lille in September 1985 and this book contains updated and expanded presentations of most of the lectures given there. These lectures are concerned with the field of homogeneous transition metal catalysis and its application to the synthesis of organic intermediates and fine chemicals from an academic and industrial viewpoint. The continuing petroleum crisis which began in the early 1970s has given rise to the need to develop new feedstocks for the chemical industry.