Catalytic RNA


Book Description

In recent years, unprecedented advances in many aspects of the molecular biology of nucleic acids have been witnessed. The area of RNA chemistry has undergone a kind of explosion, with a huge interest in RNA-mediated catalysis. At the same time, our structural understanding of DNA-protein interactions has increased enormously, and the related area of RNA-protein interactions is beginning to gather pace. This softcover edition from the successful series Nucleic Acids and Molecular Biology is devoted to the structure and mechanism of ribozymes, and their potential exploitation. The subject has both important evolutionary implications and potential practical application in the development of therapeutic agents for diseases such as AIDS.




Ribozymes and RNA Catalysis


Book Description

Takes the reader through the origins of catalysis in RNA and necessarily includes significant discussion of structure and folding. The main focus of the book concerns chemical mechanism with extensive comment on how, despite the importance of RNA catalysis in the cell, its origins are still poorly understood and often controversial. The reader is given an outline of the important role of RNA catalysis in many aspects of cell function, including RNA processing and translation.







Catalytic RNA


Book Description

This special volume of Progress in Molecular Biology and Translational Science focuses on catalytic RNA. Written by experts in the field, the reviews cover a range of topics, from hammerhead ribozymes to spliceosome catalysis to Varkud satellite and hairpin ribozymes. - Contributions from leading authorities - Informs and updates on all the latest developments in the field




Looking at Ribozymes


Book Description

Behind the neologism “ribozymes” lies a family of fascinating molecules, ribo-enzymes, which have been relatively little studied. These catalytically active RNAs are found in all strata of life, from viruses to the human genome. At the end of the 1970s, the discovery of a catalytic RNA nestled in an intron, followed by another involved in the maturation of transfer RNAs, led to the discovery of new ribozymes and the transition from a strictly “proteocentric” vision, inherited from the dogma of molecular biology, to a more “nucleocentric” one. Since then, a variety of ribozymes have been identified in genomes, where their functions often remain mysterious. Looking at Ribozymes traces the discovery of these molecules and presents a picture of their functional diversity, catalytic mechanisms and distribution within the tree of life.




Ribozymes


Book Description

Ribozymes Provides comprehensive coverage of a core field in the molecular biosciences, bringing together decades of knowledge from the world’s top professionals in the field Timely and unique in its breadth of content, this all-encompassing and authoritative reference on ribozymes documents the great diversity of nucleic acid-based catalysis. It integrates the knowledge gained over the past 35 years in the field and features contributions from virtually every leading expert on the subject. Ribozymes is organized into six major parts. It starts by describing general principles and strategies of nucleic acid catalysis. It then introduces naturally occurring ribozymes and includes the search for new catalytic motifs or novel genomic locations of known motifs. Next, it covers the development and design of engineered ribozymes, before moving on to DNAzymes as a close relative of ribozymes. The next part examines the use of ribozymes for medicinal and environmental diagnostics, as well as for therapeutic tools. It finishes with a look at the tools and methods in ribozyme research, including the techniques and assays for structural and functional characterization of nucleic acid catalysts. The first reference to tie together all aspects of the multi-faceted field of ribozymes Features more than 30 comprehensive chapters in two volumes Covers the chemical principles of RNA catalysis; naturally occurring ribozymes, engineered ribozymes; DNAzymes; ribozymes as tools in diagnostics and therapy, and tools and methods to study ribozymes Includes first-hand accounts of concepts, techniques, and applications by a team of top international experts from leading academic institutions Dedicates half of its content to methods and practical applications, ranging from bioanalytical tools to medical diagnostics to therapeutics Ribozymes is an unmatched resource for all biochemists, biotechnologists, molecular biologists, and bioengineers interested in the topic.




Structural and Catalytic Roles of Metal Ions in RNA


Book Description

The discovery of ribozymes triggered a huge interest in the chemistry and biology of RNAs. Much of the recently made progress focusing on metal ions is addressed in Volume 9. This book, written by 28 internationally recognized experts, provides a most up-to-date view and it is thus of special relevance for colleagues teaching courses in biological inorganic chemistry and for researchers dealing, e.g., with nucleic acids, gene expression, and enzymology, but also for those in analytical and bioinorganic chemistry or biophysics. Structural and Catalytic Roles of Metal Ions in RNA describes metal ion-binding motives, methods to detect and characterize metal ion binding sites, and the role of metal ions in folding and catalysis. It deals with diffuse metal ion binding, RNA quadruplexes, the regulation of riboswitches, metal ions and ribozymes, including artificial ribozymes. The ribosome, ribozymes and redox cofactors, as well as the binding of kinetically inert metal ions to RNA are also considered.




Molecular Biology of RNA


Book Description

RNA plays a central, and until recently, somewhat underestimated role in the genetics underlying all forms of life on earth. This versatile molecule not only plays a crucial part in the synthesis of proteins from a DNA template, but is also intrinsically involved in the regulation of gene expression, and can even act as a catalyst in the form of a ribozyme. This latter property has led to the hypothesis that RNA - rather than DNA - could have played an essential part in the origin of life itself. This landmark text provides a systematic overview of the exciting and rapidly moving field of RNA biology. Key pioneering experiments, which provided the underlying evidence for what we now know, are described throughout, while the relevance of the subject to human disease is highlighted via frequent boxes. For the second edition of Molecular Biology of RNA, more introductory material has been incorporated at the beginning of the text, to aid students studying the subject for the first time. Throughout the text, new material has been included - particularly in relation to RNA binding domains, non-coding RNAs, and the connection between RNA biology and epigenetics. Finally, a new closing chapter discusses how exciting new technologies are being used to explore current topical areas of research.




Catalytic RNAs for a RNA World


Book Description

At some point in the origin of life, life likely went through a stage where RNA acted as genome and catalyst--the RNA world. Eventually, life evolved into the form we observe today, with DNA acting as genome and proteins acting as the main catalysts. Although there is no known direct evidence of RNA world organisms, we can gain understanding of life's early ancestors by creating catalytic RNAs in the lab that could have existed in an RNA world. This dissertation aims to develop and improve two of these catalytic RNAs (ribozymes). The first is a triphosphorylation ribozyme, a catalytic RNA that triphosphorylates the 5' hydroxyl groups of RNA using trimetaphosphate. In a RNA world, this activity could have been useful for chemically activating RNAs for ligation or polymerization. The second is a polymerase ribozyme, a catalytic RNA that catalyzes RNA polymerization. This activity could have been important for replication in a RNA world organism. In order to identify catalytic RNAs that can triphosphorylate their own 5' hydroxyl groups, an in vitro selection method was established. From a library of ~1014 random sequences, several active sequences were identified and one was analyzed in greater detail. This triphosphorylation ribozyme was modified to act in trans and had a reaction rate of 0.16 min−1 under optimal conditions. Preliminary analysis of its secondary structure suggests that it forms a four helical junction motif. A catalytic RNA that catalyzes the polymerization of RNA was previously developed, but it is too inefficient to replicate itself. Its limitation is weak substrate binding. Here efforts were made to improve the polymerase ribozyme by reducing charge repulsion between the negatively charged ribozyme and its substrate using positively charged amino acids as cofactors. However, these cofactors did not improve ribozyme polymerization. An in vitro selection method that puts selection pressure on the ribozyme to bind its substrate in trans was developed to try to find improved polymerase ribozymes. Although no active ribozymes were found, several steps of a technically challenging in vitro selection method were established. In summary, this thesis presents work to develop two catalytic RNAs for a RNA world. An existing polymerase ribozyme was tested with amino acid cofactors and progress was made towards developing an in vitro selection that could be used to find novel polymerase ribozymes. Also, a novel catalytic RNA that can triphoshphorylate RNAs was created. This opens up new avenues that will deepen our understanding of the RNA world.




Small Catalytic RNA


Book Description