Categorical Structure of Closure Operators


Book Description

Our motivation for gathering the material for this book over aperiod of seven years has been to unify and simplify ideas wh ich appeared in a sizable number of re search articles during the past two decades. More specifically, it has been our aim to provide the categorical foundations for extensive work that was published on the epimorphism- and cowellpoweredness problem, predominantly for categories of topological spaces. In doing so we found the categorical not ion of closure operators interesting enough to be studied for its own sake, as it unifies and describes other significant mathematical notions and since it leads to a never-ending stream of ex amples and applications in all areas of mathematics. These are somewhat arbitrarily restricted to topology, algebra and (a small part of) discrete mathematics in this book, although other areas, such as functional analysis, would provide an equally rich and interesting supply of examples. We also had to restrict the themes in our theoretical exposition. In spite of the fact that closure operators generalize the uni versal closure operations of abelian category theory and of topos- and sheaf theory, we chose to mention these aspects only en passant, in favour of the presentation of new results more closely related to our original intentions. We also needed to refrain from studying topological concepts, such as compactness, in the setting of an arbitrary closure-equipped category, although this topic appears prominently in the published literature involving closure operators.




Categorical Structures and Their Applications


Book Description

The book collects original research papers on applied categorical structures, most of which have been presented at the North-West European Category Seminar 2003 in Berlin. The spectrum of these mathematical results reflects the varied interests of Horst Herrlich OCo one of the leading category theorists of the world OCo to whom this volume is dedicated in view of his 65th birthday. The book contains applications of categorical methods in various branches of mathematics such as algebra, analysis, logic and topology, as well as fuzzy structures and computer science. At the end of the book the reader will find a complete list of Horst HerrlichOCOs publications. The proceedings have been selected for coverage in: . OCo Index to Scientific & Technical Proceedings- (ISTP- / ISI Proceedings). OCo Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings). OCo CC Proceedings OCo Engineering & Physical Sciences."




Categorical Closure Operators


Book Description

This book presents the general theory of categorical closure operators to gether with a number of examples, mostly drawn from topology and alge bra, which illustrate the general concepts in several concrete situations. It is aimed mainly at researchers and graduate students in the area of cate gorical topology, and to those interested in categorical methods applied to the most common concrete categories. Categorical Closure Operators is self-contained and can be considered as a graduate level textbook for topics courses in algebra, topology or category theory. The reader is expected to have some basic knowledge of algebra, topology and category theory, however, all categorical concepts that are recurrent are included in Chapter 2. Moreover, Chapter 1 contains all the needed results about Galois connections, and Chapter 3 presents the the ory of factorization structures for sinks. These factorizations not only are essential for the theory developed in this book, but details about them can not be found anywhere else, since all the results about these factorizations are usually treated as the duals of the theory of factorization structures for sources. Here, those hard-to-find details are provided. Throughout the book I have kept the number of assumptions to a min imum, even though this implies that different chapters may use different hypotheses. Normally, the hypotheses in use are specified at the beginning of each chapter and they also apply to the exercise set of that chapter.




Rings, Modules, and Closure Operations


Book Description

This book presents a systematic exposition of the various applications of closure operations in commutative and noncommutative algebra. In addition to further advancing multiplicative ideal theory, the book opens doors to the various uses of closure operations in the study of rings and modules, with emphasis on commutative rings and ideals. Several examples, counterexamples, and exercises further enrich the discussion and lend additional flexibility to the way in which the book is used, i.e., monograph or textbook for advanced topics courses.




Categorical Perspectives


Book Description

"Categorical Perspectives" consists of introductory surveys as well as articles containing original research and complete proofs devoted mainly to the theoretical and foundational developments of category theory and its applications to other fields. A number of articles in the areas of topology, algebra and computer science reflect the varied interests of George Strecker to whom this work is dedicated. Notable also are an exposition of the contributions and importance of George Strecker's research and a survey chapter on general category theory. This work is an excellent reference text for researchers and graduate students in category theory and related areas. Contributors: H.L. Bentley * G. Castellini * R. El Bashir * H. Herrlich * M. Husek * L. Janos * J. Koslowski * V.A. Lemin * A. Melton * G. Preuá * Y.T. Rhineghost * B.S.W. Schroeder * L. Schr"der * G.E. Strecker * A. Zmrzlina




Jordan, Real and Lie Structures in Operator Algebras


Book Description

The theory of operator algebras acting on a Hilbert space was initiated in thirties by papers of Murray and von Neumann. In these papers they have studied the structure of algebras which later were called von Neu mann algebras or W* -algebras. They are weakly closed complex *-algebras of operators on a Hilbert space. At present the theory of von Neumann algebras is a deeply developed theory with various applications. In the framework of von Neumann algebras theory the study of fac tors (i.e. W* -algebras with trivial centres) is very important, since they are comparatively simple and investigation of general W* -algebras can be reduced to the case of factors. Therefore the theory of factors is one of the main tools in the structure theory of von Neumann algebras. In the middle of sixtieth Topping [To 1] and Stormer [S 2] have ini tiated the study of Jordan (non associative and real) analogues of von Neumann algebras - so called JW-algebras, i.e. real linear spaces of self adjoint opera.tors on a complex Hilbert space, which contain the identity operator 1. closed with respect to the Jordan (i.e. symmetrised) product INTRODUCTION 2 x 0 y = ~(Xy + yx) and closed in the weak operator topology. The structure of these algebras has happened to be close to the struc ture of von Neumann algebras and it was possible to apply ideas and meth ods similar to von Neumann algebras theory in the study of JW-algebras.




Categorical Topology


Book Description

Proceedings of the L'Aquila Conference 1994




Categorical Foundations


Book Description

Publisher Description




Algebraic Structures and Operators Calculus


Book Description

Introduction I. General remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 III. Lie algebras: some basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Chapter 1 Operator calculus and Appell systems I. Boson calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II. Holomorphic canonical calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 III. Canonical Appell systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chapter 2 Representations of Lie groups I. Coordinates on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 II. Dual representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 III. Matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 IV. Induced representations and homogeneous spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 General Appell systems Chapter 3 I. Convolution and stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 II. Stochastic processes on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 III. Appell systems on Lie groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Chapter 4 Canonical systems in several variables I. Homogeneous spaces and Cartan decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 II. Induced representation and coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 III. Orthogonal polynomials in several variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Chapter 5 Algebras with discrete spectrum I. Calculus on groups: review of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 II. Finite-difference algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 III. q-HW algebra and basic hypergeometric functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 IV. su2 and Krawtchouk polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 V. e2 and Lommel polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Chapter 6 Nilpotent and solvable algebras I. Heisenberg algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 II. Type-H Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Vll III. Upper-triangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 IV. Affine and Euclidean algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Chapter 7 Hermitian symmetric spaces I. Basic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 II. Space of rectangular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 III. Space of skew-symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 IV. Space of symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Chapter 8 Properties of matrix elements I. Addition formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 II. Recurrences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 III. Quotient representations and summation formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 Chapter 9 Symbolic computations I. Computing the pi-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 II. Adjoint group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 III. Recursive computation of matrix elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .




Papers in Honour of Bernhard Banaschewski


Book Description

Proceedings of the BB Fest 96, a conference held at the University of Cape Town, 15-20 July 1996, on Category Theory and its Applications to Topology, Order and Algebra