Causation in Science and the Methods of Scientific Discovery


Book Description

Causal questions are relevant to all sciences and social sciences, yet how we discover causal connections is no easy matter. Indeed, the choice of methods concerns the correct norms for the empirical study of the world. In this text, two experts on causation relate philosophical theory to scientific practice and propose nine new norms of discovery.




Causation in Science and the Methods of Scientific Discovery


Book Description

Causation is the main foundation upon which the possibility of science rests. Without causation, there would be no scientific understanding, explanation, prediction, nor application in new technologies. How we discover causal connections is no easy matter, however. Causation often lies hidden from view and it is vital that we adopt the right methods for uncovering it. The choice of methods will inevitably reflect what one takes causation to be, making an accurate account of causation an even more pressing matter. This enquiry informs the correct norms for an empirical study of the world. In Causation in Science and the Methods of Scientific Discovery, Rani Lill Anjum and Stephen Mumford propose nine new norms of scientific discovery. A number of existing methodological and philosophical orthodoxies are challenged as they argue that progress in science is being held back by an overly simplistic philosophy of causation.




Causality and Modern Science


Book Description

"I regard it as a truly seminal work in this field." — Professor William A. Wallace, author of Causality and Scientific ExplanationThis third edition of a distinguished book on the subject of causality is clear evidence that this principle continues to be an important area of philosophic enquiry.Non-technical and clearly written, this book focuses on the ontological problem of causality, with specific emphasis on the place of the causal principle in modern science. The author first defines the terminology employed and describes various formulations on the causal principle. He then examines the two primary critiques of causality, the empiricist and the romantic, as a prelude to the detailed explanation of the actual assertions of causal determination. Finally, Dr. Bunge analyzes the function of the causal principle in science, touching on such subjects as scientific law, scientific explanation, and scientific prediction. Included, also, is an appendix that offers specific replies to questions and criticisms raised upon the publication of the first edition.Now professor of philosophy and head of the Foundation and Philosophy of Science Unit at McGill University in Montreal, Dr. Mario Bunge has formerly been a full professor of theoretical physics. His observations on causality are of great interest to both scientists and humanists, as well as the general scientific and philosophic reader.







The Book of Why


Book Description

A Turing Award-winning computer scientist and statistician shows how understanding causality has revolutionized science and will revolutionize artificial intelligence "Correlation is not causation." This mantra, chanted by scientists for more than a century, has led to a virtual prohibition on causal talk. Today, that taboo is dead. The causal revolution, instigated by Judea Pearl and his colleagues, has cut through a century of confusion and established causality -- the study of cause and effect -- on a firm scientific basis. His work explains how we can know easy things, like whether it was rain or a sprinkler that made a sidewalk wet; and how to answer hard questions, like whether a drug cured an illness. Pearl's work enables us to know not just whether one thing causes another: it lets us explore the world that is and the worlds that could have been. It shows us the essence of human thought and key to artificial intelligence. Anyone who wants to understand either needs The Book of Why.




Causality


Book Description

Head hits cause brain damage - but not always. Should we ban sport to protect athletes? Exposure to electromagnetic fields is strongly associated with cancer development - does that mean exposure causes cancer? Should we encourage old fashioned communication instead of mobile phones to reduce cancer rates? According to popular wisdom, the Mediterranean diet keeps you healthy. Is this belief scientifically sound? Should public health bodies encourage consumption of fresh fruit and vegetables? Severe financial constraints on research and public policy, media pressure, and public anxiety make such questions of immense current concern not just to philosophers but to scientists, governments, public bodies, and the general public. In the last decade there has been an explosion of theorizing about causality in philosophy, and also in the sciences. This literature is both fascinating and important, but it is involved and highly technical. This makes it inaccessible to many who would like to use it, philosophers and scientists alike. This book is an introduction to philosophy of causality - one that is highly accessible: to scientists unacquainted with philosophy, to philosophers unacquainted with science, and to anyone else lost in the labyrinth of philosophical theories of causality. It presents key philosophical accounts, concepts and methods, using examples from the sciences to show how to apply philosophical debates to scientific problems.




Causality in the Sciences


Book Description

Why do ideas of how mechanisms relate to causality and probability differ so much across the sciences? Can progress in understanding the tools of causal inference in some sciences lead to progress in others? This book tackles these questions and others concerning the use of causality in the sciences.--[Source inconnue].




Scientific Knowledge


Book Description

With this defense of intensional realism as a philosophical foundation for understanding scientific procedures and grounding scientific knowledge, James Fetzer provides a systematic alternative to much of recent work on scientific theory. To Fetzer, the current state of understanding the 'laws' of nature, or the 'law-like' statements of scientific theories, appears to be one of philosophical defeat; and he is determined to overcome that defeat. Based upon his incisive advocacy of the single-case propensity interpretation of probability, Fetzer develops a coherent structure within which the central problems of the philosophy of science find their solutions. Whether the reader accepts the author's contentions may, in the end, depend upon ancient choices in the interpretation of experience and explanation, but there can be little doubt of Fetzer's spirited competence in arguing for setting ontology before epistemology, and within the analysis of language. To us, Fetzer's ambition is appealing, fusing, as he says, the substantive commitment of the Popperian with the conscientious sensitivity of the Hempelian to the technical precision required for justified explication. To Fetzer, science is the objective pursuit of fallible general knowledge. This innocent character ization, which we suppose most scientists would welcome, receives a most careful elaboration in this book; it will demand equally careful critical con sideration. Center for the Philosophy and ROBERT S. COHEN History of Science, MARX W. WARTOFSKY Boston University October 1981 v TABLE OF CONTENTS EDITORIAL PREFACE v FOREWORD xi ACKNOWLEDGEMENTS xv PART I: CAUSATION 1.