Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines


Book Description

The book provides a detailed approach to the physics, fluid dynamics, modeling, experimentation and numerical simulation of cavitation phenomena, with special emphasis on cavitation-induced instabilities and their implications on the design and operation of high performance turbopumps and hydraulic turbines. The first part covers the fundamentals (nucleation, dynamics, thermodynamic effects, erosion) and forms of cavitation (attached cavitation, cloud cavitation, supercavitation, vortex cavitation) relevant to hydraulic turbomachinery, illustrates modern experimental techniques for the characterization, visualization and analysis of cavitating flows, and introduces the main aspects of the hydrodynamic design and performance of axial inducers, centrifugal turbopumps and hydo-turbines. The second part focuses on the theoretical modeling, experimental analysis, and practical control of cavitation-induced fluid-dynamic and rotordynamic instabilities of hydraulic turbomachinery, with special emphasis on cavitating turbopumps (cavitation surge, rotating cavitation, higher order cavitation surge, rotordynamic whirl forces). Finally, the third part of the book illustrates the alternative approaches for the simulation of cavitating flows, with emphasis on both modeling and numerical aspects. Examples of applications to the simulation of unsteady cavitation in internal flows through hydraulic machinery are illustrated in detail.




Fluid Dynamics of Cavitation and Cavitating Turbopumps


Book Description

The book focuses on the fluid dynamics of cavitation with special reference to high power density turbopumps, where it represents the major source of performance and life degradation. While covering the more fundamental aspects of cavitation and the main kinds of cavitating flows, there is focus on the hydrodynamics and instabilities of cavitating turbopumps. The book also illustrates the alternative approaches for modeling and engineering simulation of cavitating flows.




Cavitation and Associated Phenomena


Book Description

Cavitation is a dangerous process which destroys objects in a fluid. Scientific description of this multifaceted phenomenon is based on almost every area of physics, and many interesting effects are connected with cavitation. The most intriguing of them is sonoluminescence – the light emitted from a cavitating fluid. This book presents a full-scale description of cavitation: from the basic thermodynamic principles to special phenomena associated with this complex process, from the dynamics of a single gas cavity to the catastrophic macroscopic manifestations, from the domestic observations to the nuances of X-ray spectroscopic research.




Hydrodynamic Cavitation


Book Description

Hydrodynamic Cavitation A systematic introduction to critical technologies and applications of hydrodynamic cavitation In Hydrodynamic Cavitation: Devices, Design, and Applications, a distinguished team of researchers delivers an authoritative discussion of key aspects of hydrodynamic cavitation, including the design, characterization, and modeling of the devices. The book offers discussions of state-of-the-art applications of the technology, including the disinfection of water, wastewater treatment, biomass processing, and many other industrial applications. In addition to expansive case studies, the book provides an up-to-date exploration of emerging innovations and future applications of the technology. Readers will also find: A thorough introduction to hydrodynamic cavitation devices, including those based on axial and rotational flows An in-depth examination of the experimental characterization of cavitation devices and computational models Comprehensive explorations of the applications of hydrodynamic cavitation, including the disinfection of water and wastewater treatment Accessible discussions of industrial applications of hydrodynamic cavitation Perfect for chemical and process engineers, water chemists, mechanical engineers, and food chemists, Hydrodynamic Cavitation will also earn a place in the libraries of food and environmental technologists.




Characterization of Cavitation Instabilities in Rocket Engine Turbopump Inducers


Book Description

Characterized by super-synchronous rotation of cavities around the periphery of rocket engine turbopump inducers, rotating cavitation is the primary cavitation instability considered in this thesis. A recently developed hypothesis for rotating cavitation onset is assessed through novel experimental analysis and a previously developed body force modeling approach using the MIT inducer, representative of the design of the Space Shuttle main engine low-pressure oxidizer pump inducer. A previously developed temporal and spatial Fourier decomposition, known as Traveling Wave Energy (TWE) analysis, of experimental unsteady inlet pressure measurements of the cavitating MIT inducer is demonstrated. TWE analysis offers several advantages over the current experimental analysis methods, resolving frequency, spatial mode shapes, and rotation direction of cavitation phenomena. Cut-on/cut-off behavior between rotating cavitation and alternate blade cavitation is observed, supporting the hypothesis that alternate blade cavitation is a necessary precursor to rotating cavitation onset. TWE is adapted for use on high speed borescope video data taken in the same experimental campaign. The frequency content extracted is qualitatively correlated with the results from the pressure data, establishing TWE as a viable tool for quantitative analysis of optical data. The video TWE results indicate that cavitation instability signatures are uniform in the radial direction, suggesting that a pressure transducer array can be established as the primary detection method for rotating cavitation and thereby simplifying test setups. A body force based modeling approach typically used for aero-engine compressor stability prediction is assessed for use in predicting rotating cavitation. A previously developed inducer-specific body force model formulation is validated in a representative compressor geometry, capturing global performance across the characteristic within 7%. However, the model exhibits convergence issues when applied to the inducer, hypothesized to be due to sensitivity in the inducer's loss characteristics. The investigation suggests the low flow coefficient design of the inducer drives the loss sensitivity and is the root cause behind the model's convergence issues. The results indicate the body force model is valid for the higher flow coefficient designs and lower stagger angles typically found in aero-engine compressors and fans. Suggestions for desensitizing the model for the inducer as well as further diagnostics defining the limiting geometry case for body force modeling are made.




A Body Force Model for Cavitating Inducers in Rocket Engine Turbopumps


Book Description

Modern rocket engine turbopumps utilize cavitating inducers to meet mass and volume requirements. Rotating cavitation and higher order cavitation instabilities have frequently been observed during inducer testing and operation and can cause severe asymmetric loading on the inducer blades and shaft, potentially leading to failure of the inducer. To date no broadly applicable design method exists to characterize and suppress the onset of cavitation instabilities. This thesis presents the development of a body force model for cavitating inducers with the goal of enabling interrogation of the onset of rotating cavitation and higher order cavitation instabilities and characterization of the governing uid dynamic mechanisms. Building on body force models of gas turbine compressors for compressor stability, the model introduces an additional force component, the binormal force, to capture the strong radial flows observed in inducer ow fields. The body forces were defined and the methodology was successfully validated for two test inducers, a helical inducer and a more advanced design resembling the Space Shuttle Main Engine Low Pressure Oxidizer Pump. The head rise characteristic of each test inducer was captured with less than 4% error across the operating range and the extent of the upstream backflow region was predicted to within 18% at every operating condition. Several challenges with the blade passage model were encountered during the course of the research and the diagnostics performed to investigate them are detailed. An extension of the body force model to two-phase flows was formulated and preliminary calculations with the extended model are presented. The preliminary two-phase results are encouraging and pave the way for future assessment of rotating cavitation instabilities.







Cavitation Instabilities in Inducers


Book Description

Experimental observations of various kinds of cavitation instabilities are presented. Typical cavitation instabilities occur in the range of cavitation number where the inducer head is not affected by cavitation. This type of cavitation instability is caused by the cavity volume increase due to the increase of incidence angle and is treated in section 1. Another type of cavitation instability is caused by the positive slope of the pressure performance curve due to the blockage effect of cavitation. This type of cavitation instability is treated in section 2. Stability analyses of 1- and 2-dimensional cavitating flow predict various modes of cavitation instabilities. Usually only cavitation surge and forward rotating cavitation are observed. Other modes of cavitation instabilities such as backward rotating cavitation, higher order modes of cavitation surge and rotating cavitation are observed only under limited conditions. Those modes of cavitation instabilities are presented in section.




Flow Instabilities in Cavitating and Non-Cavitating Pumps


Book Description

It is well known that flow instabilities called rotating stall and surge may occur in non-cavitating turbomachines at flow rates smaller than design. Rotating stall is a local instability at the turbomachinery which is basically not dependent on the hydraulic system in which the turbomachine is installed. The stalled region rotates faster than impeller. Surge is a system instability in a hydraulic system which includes a turbomachinery and a capacitance (tank) which stores the working fluid depending on the pressure at the capacitance. For pumps, if a certain quantity of air is trapped in the pipeline it serves as a capacitance and a surge may occur even if the pipeline does not include external capacitance. Both rotating stall and surge occur at smaller flow rates where the performance curve has a positive slope. On the other hand, cavitation instabilities called rotating cavitation and cavitation surge may occur even at the design flow rate. Rotating cavitation is a local instability in which the cavitated region rotates, for the most cases, faster than impeller. Cavitation surge is a system instability caused by cavitation. For cavitation surge, the cavitation at the inlet of turbomachinery serves as a capacitance and it can occur in a system without any external capacitance. The present lecture is intended to explain the mechanisms of the instabilities, rotating stall, surge, rotating cavitation, and cavitation surge, as well as the characteristics of those instabilities, based on dimensional stability analyses.




Hydrodynamics of Pumps


Book Description

Hydrodynamics of Pumps is a reference for pump experts and a textbook for advanced students. It examines the fluid dynamics of liquid turbomachines, particularly pumps, focusing on special problems and design issues associated with the flow of liquid through a rotating machine. There are two characteristics of a liquid that lead to problems and cause a significantly different set of concerns than those in gas turbines. These are the potential for cavitation and the high density of liquids, which enhances the possibility of damaging, unsteady flows and forces. The book begins with an introduction to the subject, including cavitation, unsteady flows and turbomachinery, basic pump design and performance principles. Chapter topics include flow features, cavitation parameters and inception, bubble dynamics, cavitation effects on pump performance, and unsteady flows and vibration in pumps - discussed in the three final chapters. The book is richly illustrated and includes many practical examples.