CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999


Book Description

These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimazation, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.







Whirl Flutter of Turboprop Aircraft Structures


Book Description

Whirl Flutter of Turboprop Aircraft Structures, Second Edition explores the whirl flutter phenomenon, including theoretical, practical, analytical and experimental aspects of the matter. Sections provide a general overview regarding aeroelasticity, discussions on the physical principle and the occurrence of whirl flutter in aerospace practice, and experimental research conducted, especially from the 60s. Other chapters delve into analytical methods such as basic and advanced linear models, non-linear and CFD based methods, certification issues including regulation requirements, a description of possible certification approaches, and several examples of aircraft certification from aerospace. Finally, a database of relevant books, reports and papers is provided. This updated and expanded second edition covers new chapters including both analytical and experimental aspects of the subject matter. - Provides complex information on turboprop aircraft whirl flutter phenomenon - Presents both theoretical and practical (certification related) issues - Includes experimental research as well as analytical models (basic and advanced) of matter - Includes both early-performed works and recent developments - Contains a listing of relevant books and reports







Computational Aerodynamic Modeling of Aerospace Vehicles


Book Description

Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.




A Modern Course in Aeroelasticity


Book Description

This book is the sixth edition. It is suitable for one or more courses at the advanced undergraduate level and graduate level to cover the field of aeroelasticity. It is also of value to the research scholar and engineering practitioner who wish to understand the state of the art in the field. This book covers the basics of aeroelasticity or the dynamics of fluid–structure interaction. While the field began in response to the rapid development of aviation, it has now expanded into many branches of engineering and scientific disciplines and treats physical phenomena from aerospace engineering, bioengineering, civil engineering, and mechanical engineering in addition to drawing the attention of mathematicians and physicists. The basic questions addressed are dynamic stability and response of fluid structural systems as revealed by both linear and nonlinear mathematical models and correlation with experiment. The use of scaled models and full-scale experiments and tests play a key role where theory is not considered sufficiently reliable.




Thin-Walled Composite Beams


Book Description

Annotation This is the first monograph devoted to the foundation of the theory of composite anisotropic thin-walled beams and to its applications in various problems involving the aeronautical/aerospace, helicopter, naval and mechanical structures. Throughout the theoretical part, an effort was made to provide the treatment of the subject by using the equations of the 3-D elasticity theory. Non-classical effects such as transverse shear, warping constraint, anisotropy of constituent materials yielding the coupling of twist-bending (lateral), bending (transversal)-extension have been included and their implications have been thoroughly analyzed. Thermal effects have been included and in order to be able to circumvent their deleterious effects, functionally graded materials have been considered in their construction. Implications of the application of the tailoring technique and of the active feedback control on free vibration, dynamic response, instability and aeroelasticity of such structures have been amply investigated. Special care was exercised throughout this work to address and validate the adopted solution methodologies and the obtained results against those available in the literature and obtained via numerical or experimental means.







A Modern Course in Aeroelasticity


Book Description

In this new edition, the fundamental material on classical linear aeroelasticity has been revised. Also new material has been added describing recent results on the research frontiers dealing with nonlinear aeroelasticity as well as major advances in the modelling of unsteady aerodynamic flows using the methods of computational fluid dynamics and reduced order modeling techniques. New chapters on aeroelasticity in turbomachinery and aeroelasticity and the latter chapters for a more advanced course, a graduate seminar or as a reference source for an entrée to the research literature.




Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences


Book Description

This volume presents up-to-date material on the state of the art in evolutionary and deterministic methods for design, optimization and control with applications to industrial and societal problems from Europe, Asia, and America. EUROGEN 2015 was the 11th of a series of International Conferences devoted to bringing together specialists from universities, research institutions and industries developing or applying evolutionary and deterministic methods in design optimization, with emphasis on solving industrial and societal problems. The conference was organised around a number of parallel symposia, regular sessions, and keynote lectures focused on surrogate-based optimization in aerodynamic design, adjoint methods for steady & unsteady optimization, multi-disciplinary design optimization, holistic optimization in marine design, game strategies combined with evolutionary computation, optimization under uncertainty, topology optimization, optimal planning, shape optimization, and production scheduling.