Membrane-assisted Crystallization Technology


Book Description

This book covers all the basic and applied aspects of crystallization processes based on membrane technology. Synthesis and processing of membrane materials are discussed and reviewed, while mass/heat transport and control are treated in view of the non-reversible thermodynamic principles and statistical thermodynamics. Engineering process design and crystalline materials products properties, and also the relation to other traditional crystallization formats, are analyzed. Advantages, limitations, and future developments are also included in the content, with special emphasis on new fields of applications like microfluidic configurations, controlled proteins (also membrane proteins) crystallization, organic semiconductors single crystals production, and optical materials.




Control of Self-Organizing Nonlinear Systems


Book Description

The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.




Photoinduced Phase Transitions


Book Description

A new class of insulating solids was recently discovered. Whenirradiated by a few visible photons, these solids give rise to amacroscopic excited domain that has new structural and electronicorders quite different from the starting ground state. This occurrenceis called photoinduced phase transition, and this multi-authoredbook reviews recent theoretical and experimental studies of this newphenomenon.




Nitride Ceramics


Book Description

A comprehensive overview of recent developments in the field of non-oxide ceramics with special emphasis placed on the combustion synthesis of group I-VI nitrides and oxynitrides. To ensure the widest possible perspective, the authors are experts in academia, industry, or government research, and each chapter discusses different synthetic methods and process parameters, as well as important material properties and applications. The result is invaluable reading for researchers and practitioners in the industry as well as those looking for an introduction to the field. It is equally of great interest to chemists and materials scientists as well as engineers working in the area of inorganic and solid-state chemistry, structural and functional materials, catalysis, metallurgy, and electrochemistry.




Modeling and Simulation Techniques in Structural Engineering


Book Description

The development of new and effective analytical and numerical models is essential to understanding the performance of a variety of structures. As computational methods continue to advance, so too do their applications in structural performance modeling and analysis. Modeling and Simulation Techniques in Structural Engineering presents emerging research on computational techniques and applications within the field of structural engineering. This timely publication features practical applications as well as new research insights and is ideally designed for use by engineers, IT professionals, researchers, and graduate-level students.




Multiphoton Lithography


Book Description

This first book on this fascinating, interdisciplinary topic meets the much-felt need for an up-to-date overview of the field. Written with both beginners and professionals in mind, this ready reference begins with an introductory section explaining the basics of the various multi-photon and photochemical processes together with a description of the equipment needed. A team of leading international experts provides the latest research results on such materials as new photoinitiators, hybrid photopolymers, and metallic carbon nanotube composites. They also cover promising applications and prospective trends, including photonic crystals, microfluidic devices, biological scaffolds, metamaterials, waveguides, and functionalized hydrogels. By bringing together the essentials for both industrial and academic researchers, this is an invaluable companion for materials scientists, polymer chemists, surface chemists, surface physicists, biophysicists, and medical scientists working with 3D micro- and nanostructures.




Solid State Electrochemistry


Book Description

This book describes, for the first time in a modern text, the fundamental principles on which solid state electrochemistry is based. In this sense it is in contrast to other books in the field which concentrate on a description of materials. Topics include solid (ceramic) electrolytes, glasses, polymer electrolytes, intercalation electrodes, interfaces and applications. The different nature of ionic conductivity in ceramic, glassy and polymer electrolytes is described as are the thermodynamics and kinetics of intercalation reactions. The interface between solid electrolytes and electrodes is discussed and contrasted with the more conventional liquid state electrochemistry. The text provides an essential foundation of understanding for postgraduates or others entering the field for the first time and will also be of value in advanced undergraduate courses.







Complex Systems and Computational Biology Approaches to Acute Inflammation


Book Description

This second edition expands upon and updates the vital research covered in its predecessor, by presenting state-of-the-art multidisciplinary and systems-oriented approaches to complex diseases arising from and driven by the acute inflammatory response. The chapters in this volume provide an introduction to different types of computational modeling, and how these methods can be applied to specific inflammatory diseases, with a focus on providing readers a roadmap for integrating advanced mathematical and computational techniques with traditional experimental methods. In this second edition, we cover both well-established and emerging modeling methods, especially state-of-the-art machine learning approaches and the integration of data-driven and mechanistic modeling. This volume introduces the concept of Model-based Precision Medicine as an alternative approach to the current view of Precision Medicine, based on leveraging mechanistic computational modeling to decrease cost while increasing the information value of the data being obtained. By presenting the role of computational modeling as an integrated component of the research process, Complex Systems and Computational Biology Approaches to Acute Inflammation: A Framework for Model-based Precision Medicine offers a window into the recent past, the present, and the future of computationally-augmented biomedical research.