Cell-based Biosensors


Book Description

Written by recognized experts the field, this leading-edge resource is the first book to systematically introduce the concept, technology, and development of cell-based biosensors. You find details on the latest cell-based biosensor models and novel micro-structure biosensor techniques. Taking an interdisciplinary approach, this unique volume presents the latest innovative applications of cell-based biosensors in a variety of biomedical fields. The book also explores future trends of cell-based biosensors, including integrated chips, nanotechnology and microfluidics. Over 140 illustrations help clarify key topics throughout the book.




Handbook of Cell Biosensors


Book Description

This handbook is an interdisciplinary and comprehensive reference covering all aspects of cell biosensors. It is divided into four main sections which are led and organized by numerous international experts. The scope of coverage includes: Fundamentals and genetics for biosensor applications Transducers, Materials and Systems Markets, innovation and education Application of biosensors in business Biosensor research is an exciting hybrid world where biologists, chemists, physicists, engineers and computer engineers come together. This handbook will serve as an invaluable living resource for all researchers in academia and industry working with cell biosensors.




Cell-Based Biosensors


Book Description

SOME ADVANTAGES OF CELL-BASED BIOSENSORS: Isolation, purification, and immobilization of enzymes are often very difficult; these can be omitted with cell-based biosensors. Some enzymes can lose their activity during isolation or immobilization; this risk is eliminated by the use of whole cells. Enzymes in the cell's natural environment are usually extremely stable. Multi-step enzyme reactions in intact cells can be used, making it possible to avoid the preparation of complicated artificial multi-enzyme systems. Coenzymes and activators are often present in the cells, and thus, it is not necessary to add them into the system; the cell itself usually cares for their effective regeneration.




State of the Art in Biosensors


Book Description

The main challenge in biosensor development is their application for various practical tasks to provide a continuous and reliable flow of information about the indicators of natural and industrial processes and the surroundings, so enabling adequate feedback and control. Biosensors can provide essential information, as the quality of life depends mainly on our knowledge about what we breathe, what we eat and how our bodies are able to metabolize the material, which we contact. This book includes 14 chapters, written by 52 authors and is focused on the applications of biosensors for monitoring the parameters of environment, the quality of food and biomarkers of health.




Biosensors for Single-Cell Analysis


Book Description

Biosensors for Single-Cell Analysis explores a wide range of biosensor technologies and their applications in single-cell characterization and analysis. Sections cover key biophysical and chemical single-cell properties that consider proteomic, metabolic, electrical, mechanical and optical properties. Each chapter features key definitions and case studies, providing detailed guidance for researchers who want to replicate covered solutions in their work. Tutorial sections, evaluations of the current state-of-the-field and future developments are also included. Microfluidic approaches to characterization, such as microfluidic impedance flow cytometry and microfluidic flow cytometry are considered alongside more conventional approaches, such as mass spectroscopy, fluorescent and mass flow cytometry. Additionally, key types of biosensors are covered, including atomic force microscopy, micropipette aspiration, optical tweezers, microfluidic hydrodynamic stretchers, microfluidic constriction channel and microfluidic optical stretchers. - Includes chapters focused on key single-cell properties, such as proteomic, metabolic and mechanical characterization - Features case studies that illustrate the application of biosensors for single-cell analysis - Considers microfluidic approaches for each single-cell property discussed - Explores future directions for single-cell analysis and biosensor technology




3D Cell-Based Biosensors in Drug Discovery Programs


Book Description

Advances in genomics and combinatorial chemistry during the past two decades inspired innovative technologies and changes in the discovery and pre-clinical development paradigm with the goal of accelerating the process of bringing therapeutic drugs to market. Written by William Kisaalita, one of the foremost experts in this field, 3D Cell-Based Bio




Biochemical Sensors (In 2 Volumes)


Book Description

This book covers the full scope of biochemical sensors and offers a survey of the principles, design and applications of the most popular types of biosensing devices. It is presented in 19 chapters, written by 20 distinguished scientists as well as their co-workers. The topics include the design of signal transducers, signal tags and signal amplification strategies, the structure of biosensing interfaces with new biorecognition elements such as aptamers and DNAzymes, and different newly emerging nanomaterials such as Au nanoclusters, carbon nitride, silicon, upconversion nanoparticles and two-dimensional materials, and the applications in wearable detections, biofuel cells, biomarker analyses, bioimaging, single cell analysis and in vivo sensing.By discussing recent advances, it is hoped this book will bridge the common gap between research literature and standard textbooks. Research into biochemical sensors and their biomedical applications is proceeding in a number of exciting directions, as reflected by the content. This book is published in honor of the 90th birthday of Professor Shaojun Dong, who performed many pioneering studies on modified electrodes and biochemical sensors.




Recognition Receptors in Biosensors


Book Description

Recognition receptors play a key role in the successful implementation of chemical and biosensors. Molecular recognition refers to non-covalent speci?c binding between molecules, one of which is typically a macromolecule or a molecular assembly, and the other is the target molecule (ligand or analyte). Biomolecular recognition is typically driven by many weak interactions such as hydrogen bo- ing, metal coordination, hydrophobic forces, van der Waals forces, pi-pi interactions and electrostatic interaction (due to permanent charges, dipoles, and quadrupoles) the polarization of charge distributions by the interaction partner leading to ind- tion and dispersion forces, and Pauli-exclusion-principle-derived inter-atomic repulsion, and a strong, “attractive” force arising largely from the entropy of the solvent and termed the hydrophobic effect. In recent years, there has been much progress in understanding the forces that drive the formation of such complexes, and how these forces are relate to the physical properties of the interacting molecules and their environment allows rational design of molecules and materials that interact in speci?c and desired ways. This book presents a signi?cant and up-to-date review of the various recognition elements, their immobilization, characterization techniques by a panel of dist- guished scientists. This work is a comprehensive approach to the recognition receptors area presenting a thorough knowledge of the subject and an effective integration of these receptors on sensor surfaces in order to appropriately convey the state-of the-art fundamentals and applications of the most innovative approaches.




Fluorescent Protein-Based Biosensors


Book Description

In Fluorescent Protein-Based Biosensors: Methods and Protocols, experts in the field have assembled a series of protocols describing several methods in which fluorescent protein-based reporters can be used to gain unique insights into the regulation of cellular signal transduction. Genetically encodable fluorescent biosensors have allowed researchers to observe biochemical processes within the endogenous cellular environment with unprecedented spatiotemporal resolution. As the number and diversity of available biosensors grows, it is increasingly important to equip researchers with an understanding of the key concepts underlying the design and application of genetically encodable fluorescent biosensors to live cell imaging. Written in the successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and easily accessible, Fluorescent Protein-Based Biosensors: Methods and Protocols promises to be a valuable resource for researchers interested in applying current biosensors to the study of biochemical processes in living cells as well as those interested in developing novel biosensors to visualize other cellular phenomena.




Biosensors for Environmental Monitoring


Book Description

Real-time and reliable detection of molecular compounds and bacteria is essential in modern environmental monitoring. For rapid analyses, biosensing devices combining high selectivity of biomolecular recognition and sensitivity of modern signal-detection technologies offer a promising platform. Biosensors allow rapid on-site detection of pollutants and provide potential for better understanding of the environmental processes, including the fate and transport of contaminants.This book, including 12 chapters from 37 authors, introduces different biosensor-based technologies applied for environmental analyses.