Cell Biology of Metals and Nutrients


Book Description

Plants are composed of 17 essential and at least 5 beneficial elements, and these must be taken up as metal or nutrient ions to allow for growth and cell division. Much effort has been devoted to studying the physiology and biochemistry of metals and nutrients in plants. The aspect of cell biology, however, is an emerging new field and much needs to be learned about sensing, long-distance communication within plants, and cellular signal transduction chains in response to environmental stress. Cellular malfunction and consequently disease result when any of the key steps in metal and nutrient homeostasis are disrupted. Working together, leading experts in their respective fields provide a new concept that reaches beyond plant nutrition and plasmalemma transport into cellular physiology. Each chapter contains basic information on uptake, physiological function, deficiency and toxicity syndromes, long-distance and intracellular transport. The discussion is devoted to metals and nutrients where recent progress has been made and highlights the aspects of homeostasis and sensing, signaling and regulation, drawing parallels to other organisms including humans. Finally, the book identifies gaps in our current knowledge and lays out future research directions.




Cell Biology of Metals and Nutrients


Book Description

Plants are composed of 17 essential and at least 5 beneficial elements, and these must be taken up as metal or nutrient ions to allow for growth and cell division. Much effort has been devoted to studying the physiology and biochemistry of metals and nutrients in plants. The aspect of cell biology, however, is an emerging new field and much needs to be learned about sensing, long-distance communication within plants, and cellular signal transduction chains in response to environmental stress. Cellular malfunction and consequently disease result when any of the key steps in metal and nutrient homeostasis are disrupted. Working together, leading experts in their respective fields provide a new concept that reaches beyond plant nutrition and plasmalemma transport into cellular physiology. Each chapter contains basic information on uptake, physiological function, deficiency and toxicity syndromes, long-distance and intracellular transport. The discussion is devoted to metals and nutrients where recent progress has been made and highlights the aspects of homeostasis and sensing, signaling and regulation, drawing parallels to other organisms including humans. Finally, the book identifies gaps in our current knowledge and lays out future research directions.




Cellular and Molecular Biology of Metals


Book Description

With chapter contributions from more than 30 metal biology experts, Cellular and Molecular Biology of Metals explains the role of key divalent metal ions involved in the molecular and cellular biology of various target cell populations. Although it primarily focuses on homeostatic metals, such as nickel, zinc, and chromium, the text also discusses




Molecular Biology of Metal Homeostasis and Detoxification


Book Description

One of the challenges faced by every cell as well as by whole organisms is to maintain appropriate concentrations of essential nutrient metals while excluding nonessential toxic metals. Toward that end, all organisms have developed mechanisms for metal homeostasis and detoxification to maintain metal levels within physiological limits. This book brings together current knowledge of the molecular basis of metal homeostasis and detoxification in various eukaryotic model systems, including yeasts, plants, and mammals. It focuses on the cellular systems controlling metal transport, intracellular distribution, and immobilization as well as on systems regulating metal-dependent transcription. In addition to environmental aspects (including phytoremediation), the book treats the pathophysiology of metal deficiency and overload in relation to disease.




Metals in Cells


Book Description

Over the last three decades a lot of research on the role of metals in biochemistry and medicine has been done. As a result many structures of biomolecules with metals have been characterized and medicinal chemistry studied the effects of metal containing drugs. This new book (from the EIBC Book Series) covers recent advances made by top researchers in the field of metals in cells [the “metallome”] and include: regulated metal ion uptake and trafficking, sensing of metals within cells and across tissues, and identification of the vast cellular factors designed to orchestrate assembly of metal cofactor sites while minimizing toxic side reactions of metals. In addition, it features aspects of metals in disease, including the role of metals in neuro-degeneration, liver disease, and inflammation, as a way to highlight the detrimental effects of mishandling of metal trafficking and response to "foreign" metals. With the breadth of our recently acquired understanding of metals in cells, a book that features key aspects of cellular handling of inorganic elements is both timely and important. At this point in our understanding, it is worthwhile to step back and take an expansive view of how far our understanding has come, while also highlighting how much we still do not know. The content from this book will publish online, as part of EIBC in December 2013, find out more about the Encyclopedia of Inorganic and Bioinorganic Chemistry, the essential online resource for researchers and students working in all areas of inorganic and bioinorganic chemistry.




Metals and Micronutrients


Book Description

Metals and Micronutrients: Uptake and Utilization by Plants contains the contributions of invited speakers at 1981 Easter meeting of the Phytochemical Society of Europe. The meeting brings together chemists, biochemists, physiologists, and agronomists to discuss aspects of phytometallurgy-how plants extract,accumulate, and use metals. The order of chapters in this book is meant to emphasize stages in the sequence, that is, uptake-incorporation-function. This book first describes the process of absorption of metals and micronutrients in plants, as well as the influences of the environment. This text then talks about the aspects of the movement and storage of iron and its incorporation into prosthetic groups. Some ways in which metals are involved in physiological and metabolic processes in plants are explained. This reference material will be valuable to senior undergraduates and postgraduates in this field of interest.




Plant Stress Physiology, 2nd Edition


Book Description

Completely updated from the successful first edition, this book provides a timely update on the recent progress in our knowledge of all aspects of plant perception, signalling and adaptation to a variety of environmental stresses. It covers in detail areas such as drought, salinity, waterlogging, oxidative stress, pathogens, and extremes of temperature and pH. This second edition presents detailed and up-to-date research on plant responses to a wide range of stresses Includes new full-colour figures to help illustrate the principles outlined in the text Is written in a clear and accessible format, with descriptive abstracts for each chapter. Written by an international team of experts, this book provides researchers with a better understanding of the major physiological and molecular mechanisms facilitating plant tolerance to adverse environmental factors. This new edition of Plant Stress Physiology is an essential resource for researchers and students of ecology, plant biology, agriculture, agronomy and plant breeding.




Plant Roots


Book Description

The decade since the publication of the third edition of this volume has been an era of great progress in biology in general and the plant sciences in particular. This is especially true with the advancements brought on by the sequencing of whole genomes of model organisms and the development of "omics" techniques. This fourth edition of Plant Roots: The Hidden Half reflects these developments that have transformed not only the field of biology, but also the many facets of root science. Highlights of this new edition include: The basics of root research and their evolution and role in the global context of soil development and atmosphere composition New understandings about roots gained in the post-genomic era, for example, how the development of roots became possible, and the genetic basis required for this to occur The mechanisms that determine root structure, with chapters on cellular patterning, lateral root and vascular development, the molecular basis of adventitious roots, and other topics Plant hormone action and signaling pathways that control root development, including new chapters on strigolactones and brassinosteroids Soil resource acquisition from agricultural and ecological perspectives Root response to stress, with chapters that address the impact of the genomic revolution on this topic Root-rhizosphere interactions, from beneficial microorganisms to detrimental nematodes Modern research techniques for the field and the lab Each chapter not only presents a clear summation of the topic under discussion, but also includes a vision of what is to be expected in the years to come. The wide coverage of themes in this volume continues the tradition that makes this work recognized as a fundamental source of information for root scientists at all levels.




Plant Micronutrients


Book Description

Plants require essential nutrients (macronutrients and micronutrients) for normal functioning. Sufficiency range is the levels of nutrients necessary to meet the plant’s needs for optimal growth. This range depends on individual plant species and the particular nutrient. Nutrient levels outside of a plant’s sufficiency range cause overall crop growth and health to decline, due either to deficiency or toxicity from over-accumulation. Apart from micronutrients (B, Cl, Mn, Fe, Zn, Cu and Mo), Aluminum (Al), cerium (Ce), cobalt (Co), iodine (I), lanthanum (La), sodium (Na), selenium (Se), silicon (Si), titanium (Ti), and vanadium (V) are emerging as novel biostimulants that may enhance crop productivity and nutritional quality. These beneficial elements are not "essential" but when supplied at low dosages, they augment plant growth, development, and yield by stimulating specific molecular, biochemical, and physiological pathways in responses to challenging environments. The book is the first reference volume that approaches plant micronutrient management with the latest biotechnological and omics tools. Expertly curated chapters highlight working solutions as well as open problems and future challenges in plant micronutrient deficiency or toxicity. We believe this book will introduce readers to state-of-the-art developments and research trends in this field.