Cell Mapping Methods


Book Description

This book presents the latest algorithmic developments in the cell-mapping method for the global analysis of nonlinear dynamic systems, global solutions for multi-objective optimization problems, and global solutions for zeros of complex algebraic equations. It also discusses related engineering and scientific applications, including the nonlinear design of structures for better vibration resistance and reliability; multi-objective, structural-acoustic design for sound abatement; optimal multi-objective design of airfoils for better lift; and optimal multi-objective design of linear and nonlinear controls with or without time delay. The first book on the subject to include extensive Matlab and C++ codes, it presents various implementation algorithms of the cell-mapping method, enabling readers to understand how the method works and its programming aspects. A link to the codes on the Springer website will be provided to the readers.




Cell-to-Cell Mapping


Book Description

For many years, I have been interested in global analysis of nonlinear systems. The original interest stemmed from the study of snap-through stability and jump phenomena in structures. For systems of this kind, where there exist multiple stable equilibrium states or periodic motions, it is important to examine the domains of attraction of these responses in the state space. It was through work in this direction that the cell-to-cell mapping methods were introduced. These methods have received considerable development in the last few years, and have also been applied to some concrete problems. The results look very encouraging and promising. However, up to now, the effort of developing these methods has been by a very small number of people. There was, therefore, a suggestion that the published material, scattered now in various journal articles, could perhaps be pulled together into book form, thus making it more readily available to the general audience in the field of nonlinear oscillations and nonlinear dynamical systems. Conceivably, this might facilitate getting more people interested in working on this topic. On the other hand, there is always a question as to whether a topic (a) holds enough promise for the future, and (b) has gained enough maturity to be put into book form. With regard to (a), only the future will tell. With regard to (b), I believe that, from the point of view of both foundation and methodology, the methods are far from mature.




Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods


Book Description

As mobile robots become more common in general knowledge and practices, as opposed to simply in research labs, there is an increased need for the introduction and methods to Simultaneous Localization and Mapping (SLAM) and its techniques and concepts related to robotics. Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods investigates the complexities of the theory of probabilistic localization and mapping of mobile robots as well as providing the most current and concrete developments. This reference source aims to be useful for practitioners, graduate and postgraduate students, and active researchers alike.




Nonlinear Dynamics and Stochastic Mechanics


Book Description

Engineering systems have played a crucial role in stimulating many of the modern developments in nonlinear and stochastic dynamics. After 20 years of rapid progress in these areas, this book provides an overview of the current state of nonlinear modeling and analysis for mechanical and structural systems. This volume is a coherent compendium written by leading experts from the United States, Canada, Western and Eastern Europe, and Australia. The 22 articles describe the background, recent developments, applications, and future directions in bifurcation theory, chaos, perturbation methods, stochastic stability, stochastic flows, random vibrations, reliability, disordered systems, earthquake engineering, and numerics. The book gives readers a sophisticated toolbox that will allow them to tackle modeling problems in mechanical systems that use stochastic and nonlinear dynamics ideas. An extensive bibliography and index ensure this volume will remain a reference standard for years to come.




Advances in Nonlinear Dynamics


Book Description

This first of three volumes includes papers from the second series of NODYCON, which was held virtually in February of 2021. The conference papers reflect a broad coverage of topics in nonlinear dynamics, ranging from traditional topics from established streams of research to those from relatively unexplored and emerging venues of research. These include Fluid-structure interactions Mechanical systems and structures Computational nonlinear dynamics Analytical techniques Bifurcation and dynamic instability Rotating systems Modal interactions and energy transfer Nonsmooth systems




Global Analysis of Nonlinear Dynamics


Book Description

Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time.







EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV


Book Description

Numerical and computational methods are nowadays used in a wide range of contexts in complex systems research, biology, physics, and engineering. Over the last decades different methodological schools have emerged with emphasis on different aspects of computation, such as nature-inspired algorithms, set oriented numerics, probabilistic systems and Monte Carlo methods. Due to the use of different terminologies and emphasis on different aspects of algorithmic performance there is a strong need for a more integrated view and opportunities for cross-fertilization across particular disciplines. These proceedings feature 20 original publications from distinguished authors in the cross-section of computational sciences, such as machine learning algorithms and probabilistic models, complex networks and fitness landscape analysis, set oriented numerics and cell mapping, evolutionary multiobjective optimization, diversity-oriented search, and the foundations of genetic programming algorithms. By presenting cutting edge results with a strong focus on foundations and integration aspects this work presents a stepping stone towards efficient, reliable, and well-analyzed methods for complex systems management and analysis.







Global Nonlinear Dynamics for Engineering Design and System Safety


Book Description

This is the first book which exploits concepts and tools of global nonlinear dynamics for bridging the gap between theoretical and practical stability of systems/structures, and for possibly enhancing the engineering design in macro-, micro- and nano-mechanics. Addressed topics include complementing theoretical and practical stability to achieve load carrying capacity; dynamical integrity for analyzing global dynamics, for interpreting/predicting experimental behavior, for getting hints towards engineering design; techniques for control of chaos; response of uncontrolled and controlled system/models in applied mechanics and structural dynamics by also considerung the effect of system imperfections; from relatively simple systems to multidimensional models representative of real world applications; potential and expected impact of global dynamics for engineering design.