The Heterogeneity of Cancer Metabolism


Book Description

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.




Comparative Oncology


Book Description




Cancer as a Metabolic Disease


Book Description

The book addresses controversies related to the origins of cancer and provides solutions to cancer management and prevention. It expands upon Otto Warburg's well-known theory that all cancer is a disease of energy metabolism. However, Warburg did not link his theory to the "hallmarks of cancer" and thus his theory was discredited. This book aims to provide evidence, through case studies, that cancer is primarily a metabolic disease requring metabolic solutions for its management and prevention. Support for this position is derived from critical assessment of current cancer theories. Brain cancer case studies are presented as a proof of principle for metabolic solutions to disease management, but similarities are drawn to other types of cancer, including breast and colon, due to the same cellular mutations that they demonstrate.




Cell-wide Metabolic Alterations Associated with Malignancy


Book Description

This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods providing a a theoretical overview on metabolic alterations of cancer cells and a series of protocols that can be employed to study oncometabolism, in vitro, ex vivo and in vivo. Malignant cells exhibit metabolic changes when compared to their normal counterparts, owing to both genetic and epigenetic alterations. Although such a metabolic rewiring has recently been indicated as "yet another" general hallmark of cancer, accumulating evidence suggests that the metabolic alterations of each neoplasm rather represent a molecular signature that intimately accompanies, and hence cannot be severed from, all facets of malignant transformation. - Continues the legacy of this premier serial with quality chapters authored by leaders in the field - Covers research methods in biomineralization science - Contains sections on such topics providing a a theoretical overview on metabolic alterations of cancer cells and a series of protocols that can be employed to study oncometabolism, in vitro, ex vivo and in vivo.




Metabolism in Cancer


Book Description

This textbook presents concise chapters written by internationally respected experts on various important aspects of cancer-associated metabolism, offering a comprehensive overview of the central features of this exciting research field. The discovery that tumor cells display characteristic alterations of metabolic pathways has significantly changed our understanding of cancer: while the first description of tumor-specific changes in cellular energetics was published more than 90 years ago, the causal significance of this observation for the pathogenesis of cancer was only discovered in the post-genome era. The first 10 years of the twenty-first century were characterized by rapid advances in our grasp of the functional role of cancer-specific metabolism as well as the underlying molecular pathways. Various unanticipated interrelations between metabolic alterations and cancer-driving pathways were identified and currently await translation into diagnostic and therapeutic applications. Yet the speed, quantity, and complexity of these new discoveries make it difficult for researchers to keep up to date with the latest developments, an issue this book helps to remedy.




Essentials of Glycobiology


Book Description

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.




The Tumour Microenvironment


Book Description

Several fundamentally important questions form the basis for this book. What are the relationships between tumour formation and tumour pH? What are the effects of tumour pH and hypoxia on carcinogenesis or tumorigenesis? What are the therapeutic consequences of tumour pH? It is hypothesised that low extracellular pH is not only an important consequence of tumour growth but may also promote further tumorigenic transformation. Furthermore, in vitro studies suggest that low pH strongly affects the efficacy of chemo- and radiotherapy. Better understanding of the influence of pH on tumour growth, coupled with manipulation of the pH of the tumour microenvironment, may lead to the development of more effective therapies.




PET in Clinical Oncology


Book Description

A description of positron emission tomography in the diagnosis and management of malignant tumors. Experts from Germany and the United States present basics, technical details, and clinical aspects for both standard and new PET techniques, illustrating the importance of PET in comparison to other imaging techniques. Generously supplemented with charts, tables, and illustrations, each chapter provides readers with well-delineated descriptions, from the basic technical situation through the clinical use of PET.







The Genetics of Cancer


Book Description

It has been recognized for almost 200 years that certain families seem to inherit cancer. It is only in the past decade, however, that molecular genetics and epidemiology have combined to define the role of inheritance in cancer more clearly, and to identify some of the genes involved. The causative genes can be tracked through cancer-prone families via genetic linkage and positional cloning. Several of the genes discovered have subsequently been proved to play critical roles in normal growth and development. There are also implications for the families themselves in terms of genetic testing with its attendant dilemmas, if it is not clear that useful action will result. The chapters in The Genetics of Cancer illustrate what has already been achieved and take a critical look at the future directions of this research and its potential clinical applications.