Cellular Energy Metabolism and Its Regulation


Book Description

Cellular Energy Metabolism and Its Regulation examines the metabolic and molecular aspects of living organisms. Beginning with a discussion of evolutionary design and its close analogy with human design, it emphasizes the notion that evolution is a process of functional design, and that the characteristics of an organism, whether morphological or molecular, were selected because of functional advantage to the organism's ancestors. Thus, the study of an enzyme, a reaction, or a sequence can be biologically relevant only if its position in the hierarchy of function is kept in mind. This book dea ...







Functional Metabolism


Book Description

Functional Metabolism of Cells is the first comprehensive survey of metabolism, offering an in-depth examination of metabolism and regulation of carbohydrates, lipids, and amino acids. It provides a basic background on metabolic regulation and adaptation as well as the chemical logic of metabolism, and covers the interrelationship of metabolism to life processes of the whole organism. The book lays out a structured approach to the metabolic basis of disease, including discussion of the normal pathways of metabolism, altered pathways leading to disease, and use of molecular genetics in diagnosis and treatment of disease. It also takes a unique comparative approach in which human metabolism is a reference for metabolism in microorganisms and plant design, and presents novel coverage of development and aging, and human health and animal adaptation. The final chapter reviews the past and future promise of new genetic approaches to treatment and bioinformatics. This, the most exhaustive treatment of metabolism currently available, is a useful text for advanced undergraduates and graduates in biochemistry, cell/molecular biology, and biomedicine, as well as biochemistry instructors and investigators in related fields.




Biology for AP ® Courses


Book Description

Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.




Concepts of Biology


Book Description

Black & white print. Concepts of Biology is designed for the typical introductory biology course for nonmajors, covering standard scope and sequence requirements. The text includes interesting applications and conveys the major themes of biology, with content that is meaningful and easy to understand. The book is designed to demonstrate biology concepts and to promote scientific literacy.




Prokaryotic Metabolism and Physiology


Book Description

Extensive and up-to-date review of key metabolic processes in bacteria and archaea and how metabolism is regulated under various conditions.




Tumor Cell Metabolism


Book Description

The four sections of this book cover cell and molecular biology of tumor metabolism, metabolites, tumor microenvironment, diagnostics and epigenetics. Written by international experts, it provides a thorough insight into and understanding of tumor cell metabolism and its role in tumor biology. The book is intended for scientists in cancer cell and molecular biology, scientists in drug and diagnostic development, as well as for clinicians and oncologists.




Mitochondria and Anaerobic Energy Metabolism in Eukaryotes


Book Description

Mitochondria are sometimes called the powerhouses of eukaryotic cells, because mitochondria are the site of ATP synthesis in the cell. ATP is the universal energy currency, it provides the power that runs all other life processes. Humans need oxygen to survive because of ATP synthesis in mitochondria. The sugars from our diet are converted to carbon dioxide in mitochondria in a process that requires oxygen. Just like a fire needs oxygen to burn, our mitochondria need oxygen to make ATP. From textbooks and popular literature one can easily get the impression that all mitochondria require oxygen. But that is not the case. There are many groups of organismsm known that make ATP in mitochondria without the help of oxygen. They have preserved biochemical relicts from the early evolution of eukaryotic cells, which took place during times in Earth history when there was hardly any oxygen avaiable, certainly not enough to breathe. How the anaerobic forms of mitochondria work, in which organisms they occur, and how the eukaryotic anaerobes that possess them fit into the larger picture of rising atmospheric oxygen during Earth history are the topic of this book.




Neural Regulation of Metabolism


Book Description

This book systemically describes the mechanisms underlying the neural regulation of metabolism. Metabolic diseases, including obesity and its associated conditions, currently affect more than 500 million people worldwide. Recent research has shown that the neural regulation of metabolism is a central mechanism that controls metabolic status physiologically and pathophysiologically. The book first introduces the latest studies on the neural and cellular mechanisms of hypothalamic neurons, hypothalamic glial cells, neural circuitries, cellular signaling pathways, and synaptic plasticity in the control of appetite, body weight, feeding-related behaviors and metabolic disorders. It then summarizes the humoral mechanisms by which critical adipocyte-derived hormones and lipoprotein lipase regulate lipid and glucose metabolism, and examines the role of the hypothalamus-sympathetic nerve, a critical nerve pathway from CNS to peripheral nervous system (PNS), in the regulation of metabolism in multiple tissues/organs. Furthermore, the book discusses the functions of adipose tissue in energy metabolism. Lastly, it explores dietary interventions to treat neural diseases and some of the emerging technologies used to study the neural regulation of metabolism. Presenting cutting-edge developments in the neural regulation of metabolism, the book is a valuable reference resource for graduate students and researchers in the field of neuroscience and metabolism.




Bacterial Physiology and Metabolism


Book Description

Recent determination of genome sequences for a wide range of bacteria has made in-depth knowledge of prokaryotic metabolic function essential in order to give biochemical, physiological, and ecological meaning to the genomic information. Clearly describing the important metabolic processes that occur in prokaryotes under different conditions and in different environments, this advanced text provides an overview of the key cellular processes that determine bacterial roles in the environment, biotechnology, and human health. Prokaryotic structure is described as well as the means by which nutrients are transported into cells across membranes. Glucose metabolism through glycolysis and the TCA cycle are discussed, as well as other trophic variations found in prokaryotes, including the use of organic compounds, anaerobic fermentation, anaerobic respiratory processes, and photosynthesis. The regulation of metabolism through control of gene expression and control of the activity of enzymes is also covered, as well as survival mechanisms used under starvation conditions.