Fish Osmoregulation


Book Description

Fish lives in environments with a wide variety of chemical characteristics (fresh, brackish and seawater, acidic, alkaline, soft and hard waters). From an osmoregulatory point of view, fish have developed several mechanisms to live in these different environments. Fish osmoregulation has always attracted considerable attention and in the last years several studies have increased our knowledge of this physiological process. In this book several specialists have analyzed and reviewed the new data published regarding fish osmoregulation. The chapters present an integrative synthesis of the different aspects of this field focusing on osmoregulation in specific environments or situations, function of osmoregulatory organs, general mechanisms and endocrine control. In addition, interactions of osmoregulatory mechanisms with the immune system, diet and metabolism were also reviewed. New emerging techniques to study osmoregulation has also been analysed.







Evolutionary and Integrative Approaches for Revealing Adaptive Mechanisms in Marine Animals along Environmental Gradients


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Fish Physiology: Euryhaline Fishes


Book Description

The need for ion and water homeostasis is common to all life. For fish, ion and water homeostasis is an especially important challenge because they live in direct contact with water and because of the large variation in the salt content of natural waters (varying by over 5 orders of magnitude). Most fish are stenohaline and are unable to move between freshwater and seawater. Remarkably, some fishes are capable of life in both freshwater and seawater. These euryhaline fishes constitute an estimated 3 to 5% of all fish species. Euryhaline fishes represent some of the most iconic and interesting of all fish species, from salmon and sturgeon that make epic migrations to intertidal mudskippers that contend with daily salinity changes. With the advent of global climate change and increasing sea levels, understanding the environmental physiology of euryhaline species is critical for environmental management and any mitigative measures. This volume will provide the first integrative review of euryhalinity in fish. There is no other book that focuses on fish that have the capacity to move between freshwater and seawater. The different challenges of salt and water balance in different habitats have led to different physiological controls and regulation, which heretofore has not been reviewed in a single volume. - Collects and synthesizes the literature covering the state of knowledge of the physiology of euryhaline fish - Provides the foundational information needed for researchers from a variety of fields, including fish physiology, conservation and evolutionary biology, genomics, ecology, ecotoxicology, and comparative physiology - All authors are the leading researchers and emerging leaders in their fields




Osmotic and Ionic Regulation


Book Description

In the 40 years since the classic review of osmotic and ionic regulation written by Potts and Parry, there has been astonishing growth in scientific productivity, a marked shift in the direction and taxonomic distribution of research, and amazing changes in the technology of scientific research" It is indicative of the growth of the subject that as







Cellular and Molecular Approaches to Fish Ionic Regulation


Book Description

Many physiological processes are regulated by the movement of ions into and out of organs, tissues, and cells. During the past decade, a variety of new techniques and approaches have contributed to a deeper understanding of the myriad influences ions have on the function and structure of organisms. From respiration and excretion to neurological control and metabolic processing, ions and their regulation occupy a central role in physiology of fish as well as other organisms. - Comprehensive update of ionic regulation in fish - Focuses on wide variety of organ systems and the influence of ions on organ system function - Contributions from an international group




Ecotoxicology


Book Description

A unique presentation that unifies the field, this book brings together concepts and information about contaminant effects at all levels of the biological hierarchy. Beginning at the biomolecular level, this book builds progressively toward a discussion of effects to the global biosphere. Emphasizing ecological components and fundamental paradigms, the authors strike a balance between the presentation of details relevant at each level and the integration of phenomena and processes among levels. A milestone in the field, the book is suitable for graduate courses, as well as a reference for professionals in the field.




Biology of Stress in Fish


Book Description

Biology of Stress in Fish: Fish Physiology provides a general understanding on the topic of stress biology, including most of the recent advances in the field. The book starts with a general discussion of stress, providing answers to issues such as its definition, the nature of the physiological stress response, and the factors that affect the stress response. It also considers the biotic and abiotic factors that cause variation in the stress response, how the stress response is generated and controlled, its effect on physiological and organismic function and performance, and applied assessment of stress, animal welfare, and stress as related to model species. - Provides the definitive reference on stress in fish as written by world-renowned experts in the field - Includes the most recent advances and up-to-date thinking about the causes of stress in fish, their implications, and how to minimize the negative effects - Considers the biotic and abiotic factors that cause variation in the stress response