Cellular Neural Networks


Book Description

The field of cellular neural networks (CNNs) is of growing importance in non linear circuits and systems and it is maturing to the point of becoming a new area of study in general nonlinear theory. CNNs emerged through two semi nal papers co-authored by Professor Leon O. Chua back in 1988. Since then, the attention that CNNs have attracted in the scientific community has been vast. For instance, there are international workshops dedicated to CNNs and their applications, special issues published in both the International Journal of Circuit Theory and in the IEEE Transactions on Circuits and Systems, and there are also Associate Editors appointed in the latter journal especially for the CNN field. All of this bears witness the importance that CNNs are gaining within the scientific community. Without doubt this book is a primer in the field. Its extensive coverage provides the reader with a very comprehensive view of aspects involved in the theory and applications of cellular neural networks. The authors have done an excellent job merging basic CNN theory, synchronization, spatio temporal phenomena and hardware implementation into eight exquisitely written chapters. Each chapter is thoroughly illustrated with examples and case studies. The result is a book that is not only excellent as a professional reference but also very appealing as a textbook. My view is that students as well professional engineers will find this volume extremely useful.




Cellular Neural Networks, Multi-scroll Chaos and Synchronization


Book Description

For engineering applications that are based on nonlinear phenomena, novel information processing systems require new methodologies and design principles. This perspective is the basis of the three cornerstones of this book: cellular neural networks, chaos and synchronization. Cellular neural networks and their universal machine implementations offer a well-established platform for processing spatial-temporal patterns and wave computing. Multi-scroll circuits are generalizations to the original Chua's circuit, leading to chip implementable circuits with increasingly complex attractors. Several applications make use of synchronization techniques for nonlinear systems. A systematic overview is given for Lur'e representable systems with global synchronization criteria for master-slave and mutual synchronization, robust synchronization, HV synchronization, time-delayed systems and impulsive synchronization.




Cellular Neural Networks and Visual Computing


Book Description

Cellular Nonlinear/Neural Network (CNN) technology is both a revolutionary concept and an experimentally proven new computing paradigm. Analogic cellular computers based on CNNs are set to change the way analog signals are processed. This unique undergraduate level textbook includes many examples and exercises, including CNN simulator and development software accessible via the Internet. It is an ideal introduction to CNNs and analogic cellular computing for students, researchers and engineers from a wide range of disciplines. Leon Chua, co-inventor of the CNN, and Tamàs Roska are both highly respected pioneers in the field.




Models of Massive Parallelism


Book Description

Locality is a fundamental restriction in nature. On the other hand, adaptive complex systems, life in particular, exhibit a sense of permanence and time lessness amidst relentless constant changes in surrounding environments that make the global properties of the physical world the most important problems in understanding their nature and structure. Thus, much of the differential and integral Calculus deals with the problem of passing from local information (as expressed, for example, by a differential equation, or the contour of a region) to global features of a system's behavior (an equation of growth, or an area). Fundamental laws in the exact sciences seek to express the observable global behavior of physical objects through equations about local interaction of their components, on the assumption that the continuum is the most accurate model of physical reality. Paradoxically, much of modern physics calls for a fundamen tal discrete component in our understanding of the physical world. Useful computational models must be eventually constructed in hardware, and as such can only be based on local interaction of simple processing elements.




Neural Network Analysis, Architectures and Applications


Book Description

Neural Network Analysis, Architectures and Applications discusses the main areas of neural networks, with each authoritative chapter covering the latest information from different perspectives. Divided into three parts, the book first lays the groundwork for understanding and simplifying networks. It then describes novel architectures and algorithms, including pulse-stream techniques, cellular neural networks, and multiversion neural computing. The book concludes by examining various neural network applications, such as neuron-fuzzy control systems and image compression. This final part of the book also provides a case study involving oil spill detection. This book is invaluable for students and practitioners who have a basic understanding of neural computing yet want to broaden and deepen their knowledge of the field.




Neural and Automata Networks


Book Description

"Et moi ..., si j'avait Sll comment en revenir. One sennce mathematics has rendered the human race. It has put common sense back je n'y serais point alle.' Jules Verne whe", it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be smse'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'!ltre of this series




Chaos In Circuits And Systems


Book Description

In this volume, leading experts present current achievements in the forefront of research in the challenging field of chaos in circuits and systems, with emphasis on engineering perspectives, methodologies, circuitry design techniques, and potential applications of chaos and bifurcation. A combination of overview, tutorial and technical articles, the book describes state-of-the-art research on significant problems in this field. It is suitable for readers ranging from graduate students, university professors, laboratory researchers and industrial practitioners to applied mathematicians and physicists in electrical, electronic, mechanical, physical, chemical and biomedical engineering and science.




Handbook Of Pattern Recognition And Computer Vision (6th Edition)


Book Description

Written by world-renowned authors, this unique compendium presents the most updated progress in pattern recognition and computer vision (PRCV), fully reflecting the strong international research interests in the artificial intelligence arena.Machine learning has been the key to current developments in PRCV. This useful comprehensive volume complements the previous five editions of the book. It places great emphasis on the use of deep learning in many aspects of PRCV applications, not readily available in other reference text.




Complex-Valued Neural Networks with Multi-Valued Neurons


Book Description

Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.




Nonlinear Workbook, The: Chaos, Fractals, Cellular Automata, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C++, Java And Symbolicc++ Programs (5th Edition)


Book Description

The Nonlinear Workbook provides a comprehensive treatment of all the techniques in nonlinear dynamics together with C++, Java and SymbolicC++ implementations. The book not only covers the theoretical aspects of the topics but also provides the practical tools. To understand the material, more than 100 worked out examples and 150 ready to run programs are included. New topics added to the fifth edition are Langton's ant, chaotic data communication, self-controlling feedback, differential forms and optimization, T-norms and T-conorms with applications.