Cellular Neural Networks, Multi-scroll Chaos and Synchronization


Book Description

For engineering applications that are based on nonlinear phenomena, novel information processing systems require new methodologies and design principles. This perspective is the basis of the three cornerstones of this book: cellular neural networks, chaos and synchronization. Cellular neural networks and their universal machine implementations offer a well-established platform for processing spatial-temporal patterns and wave computing. Multi-scroll circuits are generalizations to the original Chua's circuit, leading to chip implementable circuits with increasingly complex attractors. Several applications make use of synchronization techniques for nonlinear systems. A systematic overview is given for Lur'e representable systems with global synchronization criteria for master-slave and mutual synchronization, robust synchronization, HV synchronization, time-delayed systems and impulsive synchronization.




Advances and Applications in Chaotic Systems


Book Description

This book reports on the latest advances and applications of chaotic systems. It consists of 25 contributed chapters by experts who are specialized in the various topics addressed in this book. The chapters cover a broad range of topics of chaotic systems such as chaos, hyperchaos, jerk systems, hyperjerk systems, conservative and dissipative systems, circulant chaotic systems, multi-scroll chaotic systems, finance chaotic system, highly chaotic systems, chaos control, chaos synchronization, circuit realization and applications of chaos theory in secure communications, mobile robot, memristors, cellular neural networks, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in chaos theory. This book will serve as a reference book for graduate students and researchers with a basic knowledge of chaos theory and control systems. The resulting design procedures on the chaotic systems are emphasized using MATLAB software.




Chaos Modeling and Control Systems Design


Book Description

The development of computational intelligence (CI) systems was inspired by observable and imitable aspects of intelligent activity of human being and nature. The essence of the systems based on computational intelligence is to process and interpret data of various nature so that that CI is strictly connected with the increase of available data as well as capabilities of their processing, mutually supportive factors. Developed theories of computational intelligence were quickly applied in many fields of engineering, data analysis, forecasting, biomedicine and others. They are used in images and sounds processing and identifying, signals processing, multidimensional data visualization, steering of objects, analysis of lexicographic data, requesting systems in banking, diagnostic systems, expert systems and many other practical implementations. This book consists of 15 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of Control Systems, Power Electronics, Computer Science, Information Technology, modeling and engineering applications. Special importance was given to chapters offering practical solutions and novel methods for the recent research problems in the main areas of this book, viz. Control Systems, Modeling, Computer Science, IT and engineering applications. This book will serve as a reference book for graduate students and researchers with a basic knowledge of control theory, computer science and soft-computing techniques. The resulting design procedures are emphasized using Matlab/Simulink software.




Reconfigurable Cellular Neural Networks and Their Applications


Book Description

This book explores how neural networks can be designed to analyze sensory data in a way that mimics natural systems. It introduces readers to the cellular neural network (CNN) and formulates it to match the behavior of the Wilson–Cowan model. In turn, two properties that are vital in nature are added to the CNN to help it more accurately deliver mimetic behavior: randomness of connection, and the presence of different dynamics (excitatory and inhibitory) within the same network. It uses an ID matrix to determine the location of excitatory and inhibitory neurons, and to reconfigure the network to optimize its topology. The book demonstrates that reconfiguring a single-layer CNN is an easier and more flexible solution than the procedure required in a multilayer CNN, in which excitatory and inhibitory neurons are separate, and that the key CNN criteria of a spatially invariant template and local coupling are fulfilled. In closing, the application of the authors’ neuron population model as a feature extractor is exemplified using odor and electroencephalogram classification.




Advanced Topics on Cellular Self-organizing Nets and Chaotic Nonlinear Dynamics to Model and Control Complex Systems


Book Description

This book focuses on the research topics investigated during the three-year research project funded by the Italian Ministero dell'Istruzione, dell'Universite e della Ricerca (MIUR: Ministry of Education, University and Research) under the FIRB project RBNE01CW3M. With the aim of introducing newer perspectives of the research on complexity, the final results of the project are presented after a general introduction to the subject. The book is intended to provide researchers, PhD students, and people involved in research projects in companies with the basic fundamentals of complex systems and the advanced project results recently obtained.




Advances in Chaos Theory and Intelligent Control


Book Description

The book reports on the latest advances in and applications of chaos theory and intelligent control. Written by eminent scientists and active researchers and using a clear, matter-of-fact style, it covers advanced theories, methods, and applications in a variety of research areas, and explains key concepts in modeling, analysis, and control of chaotic and hyperchaotic systems. Topics include fractional chaotic systems, chaos control, chaos synchronization, memristors, jerk circuits, chaotic systems with hidden attractors, mechanical and biological chaos, and circuit realization of chaotic systems. The book further covers fuzzy logic controllers, evolutionary algorithms, swarm intelligence, and petri nets among other topics. Not only does it provide the readers with chaos fundamentals and intelligent control-based algorithms; it also discusses key applications of chaos as well as multidisciplinary solutions developed via intelligent control. The book is a timely and comprehensive reference guide for graduate students, researchers, and practitioners in the areas of chaos theory and intelligent control.




Advances in Neural Networks: Computational and Theoretical Issues


Book Description

This book collects research works that exploit neural networks and machine learning techniques from a multidisciplinary perspective. Subjects covered include theoretical, methodological and computational topics which are grouped together into chapters devoted to the discussion of novelties and innovations related to the field of Artificial Neural Networks as well as the use of neural networks for applications, pattern recognition, signal processing, and special topics such as the detection and recognition of multimodal emotional expressions and daily cognitive functions, and bio-inspired memristor-based networks. Providing insights into the latest research interest from a pool of international experts coming from different research fields, the volume becomes valuable to all those with any interest in a holistic approach to implement believable, autonomous, adaptive and context-aware Information Communication Technologies.




A Gallery of Chua Attractors


Book Description

Chaos is considered as one of the most important concepts in modern science. It originally appeared only in computer simulation (the famous Lorenz equation of 1963), but this changed with the introduction of Chua's oscillator (1986) — a simple electronic circuit with the ability to generate a vast range of chaotic behaviors. With Chua's circuit, chaos became a physical phenomenon, readily understood and represented in mathematical language. Yet, even so, it is still difficult for the non-specialist to appreciate the full variety of behaviors that the system can produce.This book aims to bridge the gap. A gallery of nearly 900 “chaotic attractors” — some generated by Chua's physical circuit, the majority through computer simulation of the circuit and its generalizations — are illustrated as 3D color images, time series and fast Fourier transform algorithms. For interested researchers, also presented is the information necessary to replicate the behaviors and images. Finally, how the fractal richness can be plied to artistic ends in generating music and interesting sounds is shown; some examples are included in the DVD-ROM which comes with the book.The contents have also appeared in the International Journal of Bifurcation and Chaos (2007).




Fractional Order Control and Synchronization of Chaotic Systems


Book Description

The book reports on the latest advances in and applications of fractional order control and synchronization of chaotic systems, explaining the concepts involved in a clear, matter-of-fact style. It consists of 30 original contributions written by eminent scientists and active researchers in the field that address theories, methods and applications in a number of research areas related to fractional order control and synchronization of chaotic systems, such as: fractional chaotic systems, hyperchaotic systems, complex systems, fractional order discrete chaotic systems, chaos control, chaos synchronization, jerk circuits, fractional chaotic systems with hidden attractors, neural network, fuzzy logic controllers, behavioral modeling, robust and adaptive control, sliding mode control, different types of synchronization, circuit realization of chaotic systems, etc. In addition to providing readers extensive information on chaos fundamentals, fractional calculus, fractional differential equations, fractional control and stability, the book also discusses key applications of fractional order chaotic systems, as well as multidisciplinary solutions developed via control modeling. As such, it offers the perfect reference guide for graduate students, researchers and practitioners in the areas of fractional order control systems and fractional order chaotic systems.




Control of Homoclinic Chaos by Weak Periodic Perturbations


Book Description

This monograph presents a reasonably rigorous theory of a highly relevant chaos control method: suppression?enhancement of chaos by weak periodic excitations in low-dimensional, dissipative and non-autonomous systems. The theory provides analytical estimates of the ranges of parameters of the chaos-controlling excitation for suppression?enhancement of the initial chaos.The important applications of the theory presented in the book include: (1) control of chaotic escape from a potential well; (2) suppression of chaos in a driven Josephson junction; (3) control of chaotic solitons in Frenkel?Kontorova chains; (4) control of chaotic breather dynamics in perturbed sine-Gordon equations; (5) control of chaotic charged particles in electrostatic wave packets.