Cellular Respiration and Carcinogenesis


Book Description

Cellular Respiration and Carcinogenesis presents leading experts in the field as it informs the reader about both basic and recent research in the field of cellular respiration and the effects of its dysfunction, alteration or attenuation on the development of cancer. This masterfully compiled text offers the reader a fundamental understanding about how oxygen sensing and/or availability, programmed cell death, immune recognition and response and glucose metabolism are intimately linked with the two major mechanism or pathways of cellular respiration; oxidative phosphorylation and glycolysis. The editors and contributing authors proficiently and unequivocally address the effects of dysfunction of the mitochondrial oxidative phosphorylation/glycolysis (cellular respiration) mechanisms and pathways on the development of cancer. While it remains true that there are no universal truths in cancer, Cellular Respiration and Carcinogenesis opens the dialogue that the etiology of cancer can usually be associated with, and significantly attributed to the failure of one or multiple pathways of oxidative phosphorylation (cellular respiration) to normally burn fuel to generate energy, vis-à-vis the Warburg hypothesis. Keeping with its cutting-edge nature, Cellular Respiration and Carcinogenesis provides the first glimpse to a cautionary evidence based counterbalance to the recent and rapidly proliferating notion that utilization of fuel primarily via glycolysis is a hallmark of cancer development.




Cancer as a Metabolic Disease


Book Description

The book addresses controversies related to the origins of cancer and provides solutions to cancer management and prevention. It expands upon Otto Warburg's well-known theory that all cancer is a disease of energy metabolism. However, Warburg did not link his theory to the "hallmarks of cancer" and thus his theory was discredited. This book aims to provide evidence, through case studies, that cancer is primarily a metabolic disease requring metabolic solutions for its management and prevention. Support for this position is derived from critical assessment of current cancer theories. Brain cancer case studies are presented as a proof of principle for metabolic solutions to disease management, but similarities are drawn to other types of cancer, including breast and colon, due to the same cellular mutations that they demonstrate.




The Heterogeneity of Cancer Metabolism


Book Description

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.




How Tobacco Smoke Causes Disease


Book Description

This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.




Mitochondria and Cancer


Book Description

Nearly a century of scientific research has revealed that mitochondrial dysfunction is one of the most common and consistent phenotypes of cancer cells. A number of notable differences in the mitochondria of normal and cancer cells have been described. These include differences in mitochondrial metabolic activity, molecular composition of mitochondria and mtDNA sequence, as well as in alteration of nuclear genes encoding mitochondrial proteins. This book, Mitochondria and Cancer, edited by Keshav K. Singh and Leslie C. Costello, presents thorough analyses of mitochondrial dysfunction as one of the hallmarks of cancer, discusses the clinical implications of mitochondrial defects in cancer, and as unique cellular targets for novel and selective anti-cancer therapy.




Metabolic Plasticity of Cancer


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Handbook of Cancer Models with Applications


Book Description

Composed of contributions from an international team of leading researchers, this book pulls together the most recent research results in the field of cancer modeling to provide readers with the most advanced mathematical models of cancer and their applications.Topics included in the book cover oncogenetic trees, stochastic multistage models of carcinogenesis, effects of ionizing radiation on cell cycle and genomic instability, induction of DNA damage by ionizing radiation and its repair, epigenetic cancer models, bystander effects of radiation, multiple pathway models of human colon cancer, and stochastic models of metastasis. The book also provides some important applications of cancer models to the assessment of cancer risk associated with various hazardous environmental agents, to cancer screening by MRI, and to drug resistance in cancer chemotherapy. An updated statistical design and analysis of xenograft experiments as well as a statistical analysis of cancer occult clinical data are also provided.The book will serve as a useful source of reference for researchers in biomathematics, biostatistics and bioinformatics; for clinical investigators and medical doctors employing quantitative methods to develop procedures for cancer diagnosis, prevention, control and treatment; and for graduate students.




Carcinogens and Anticarcinogens in the Human Diet


Book Description

Despite increasing knowledge of human nutrition, the dietary contribution to cancer remains a troubling question. Carcinogens and Anticarcinogens assembles the best available information on the magnitude of potential cancer riskâ€"and potential anticarcinogenic effectâ€"from naturally occurring chemicals compared with risk from synthetic chemical constituents. The committee draws important conclusions about diet and cancer, including the carcinogenic role of excess calories and fat, the anticarcinogenic benefit of fiber and other substances, and the impact of food additive regulation. The book offers recommendations for epidemiological and diet research. Carcinogens and Anticarcinogens provides a readable overview of issues and addresses critical questions: Does diet contribute to an appreciable proportion of human cancer? Are there significant interactions between carcinogens and anticarcinogens in the diet? The volume discusses the mechanisms of carcinogenic and anticarcinogenic properties and considers whether techniques used to evaluate the carcinogenic potential of synthetics can be used with naturally occurring chemicals. The committee provides criteria for prioritizing the vast number of substances that need to be tested. Carcinogens and Anticarcinogens clarifies the issues and sets the direction for further investigations into diet and cancer. This volume will be of interest to anyone involved in food and health issues: policymakers, regulators, researchers, nutrition professionals, and health advocates.




Oxford Textbook of Cancer Biology


Book Description

The study of the biology of tumours has grown to become markedly interdisciplinary, involving chemists, statisticians, epidemiologists, mathematicians, bioinformaticians, and computer scientists alongside biologists, geneticists, and clinicians. The Oxford Textbook of Cancer Biology brings together the most up-to-date developments from different branches of research into one coherent volume, providing a comprehensive and current account of this rapidly evolving field. Structured in eight sections, the book starts with a review of the development and biology of multi-cellular organisms, how they maintain a healthy homeostasis in an individual, and a description of the molecular basis of cancer development. The book then illustrates, as once cells become neoplastic, their signalling network is altered and pathological behaviour follows. It explores the changes that cancer cells can induce in nearby normal tissue, the new relationship established between them and the stroma, and the interaction between the immune system and tumour growth. The authors illustrate the contribution provided by high throughput techniques to map cancer at different levels, from genomic sequencing to cellular metabolic functions, and how information technology, with its vast amounts of data, is integrated with traditional cell biology to provide a global view of the disease. The effect of the different types of treatments on the biology of the neoplastic cells are explored to understand on the one side, why some treatments succeed, and on the other, how they can affect the biology of resistant and recurrent disease. The book concludes by summarizing what we know to date about cancer, and in what direction our understanding of cancer is moving. Edited by leading authorities in the field with an international team of contributors, this book is an essential resource for scholars and professionals working in the wide variety of sub-disciplines that make up today's cancer research and treatment community. It is written not only for consultation, but also for easy cover-to-cover reading.




Innovative Medicine


Book Description

This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.