Cellulose Fibre Reinforced Composites


Book Description

Cellulose Fibre Reinforced Composites: Interface Engineering, Processing and Performance provides an up-to-date review of current research in cellulose fiber reinforced polymer composites. Key emphasis is placed on interface engineering, modern technologies needed for processing and materials performance in industrial applications. Novel techniques for interfacial adhesion, characterization and assessment of cellulose fiber reinforced composites are also discussed, along with current trends and future directions. With contributions from leading researchers in industry, academic, government and private research institutions from across the globe, the book will be an essential reference resource for all those working in the field of cellulose fibers and their composites. - Reviews advances in recent research towards enhancing the mechanical properties of cellulose fiber composites - Discusses interface engineering and modern technologies needed for processing cellulose fiber composites - Includes case studies of problems with interfaces and practical industrial applications




Cellulose Fibers: Bio- and Nano-Polymer Composites


Book Description

Because we are living in an era of Green Science and Technology, developments in the field of bio- and nano- polymer composite materials for advanced structural and medical applications is a rapidly emerging area and the subject of scientific attention. In light of the continuously deteriorating environmental conditions, researchers all over the world have focused an enormous amount of scientific research towards bio-based materials because of their cost effectiveness, eco-friendliness and renewability. This handbook deals with cellulose fibers and nano-fibers and covers the latest advances in bio- and nano- polymer composite materials. This rapidly expanding field is generating many exciting new materials with novel properties and promises to yield advanced applications in diverse fields. This book reviews vital issues and topics and will be of interest to academicians, research scholars, polymer engineers and researchers in industries working in the subject area. It will also be a valuable resource for undergraduate and postgraduate students at institutes of plastic engineering and other technical institutes.




Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites


Book Description

Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites focuses on key areas of fundamental research and applications of biocomposites. Several key elements that affect the usage of these composites in real-life applications are discussed. There will be a comprehensive review on the different kinds of biocomposites at the beginning of the book, then the different types of natural fibers, bio-polymers, and green nanoparticle biocomposites are discussed as well as their potential for future development and use in engineering biomedical and domestic products. Recently mankind has realized that unless the environment is protected, he himself will be threatened by the over consumption of natural resources as well as a substantial reduction in the amount of fresh air produced in the world. Conservation of forests and the optimal utilization of agricultural and other renewable resources like solar, wind, and tidal energy, have become important topics worldwide. With such concern, the use of renewable resources—such as plant and animal-based, fiber-reinforced polymeric composites—are now becoming an important design criterion for designing and manufacturing components for a broad range of different industrial products. Research on biodegradable polymeric composites can contribute, to some extent, to a much greener and safer environment. For example, in the biomedical and bioengineering fields, the use of natural fiber mixed with biodegradable and bioresorbable polymers can produce joint and bone fixtures to alleviate pain in patients. - Includes comprehensive information about the sources, properties, and biodegradability of natural fibers - Discusses failure mechanisms and modeling of natural fibers composites - Analyzes the effectiveness of using natural materials for enhancing mechanical, thermal, and biodegradable properties




Cellulose-Reinforced Nanofibre Composites


Book Description

Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications presents recent developments in, and applications of, nanocellulose as reinforcement in composite and nanocomposite materials. Written by leading experts, the book covers properties and applications of nanocellulose, including the production of nanocellulose from different biomass resources, the usefulness of nanocellulose as a reinforcement for polymer and paper, and major challenges for successful scale-up production in the future. The chapters draw on cutting-edge research on the use of nanosized cellulose reinforcements in polymer composites that result in advanced material characteristics and significant enhancements in physical, mechanical and thermal properties. The book presents an up-to-date review of the major innovations in the field of nanocellulose and provides a reference material for future research in biomass based composite materials, which is timely due to the sustainable, recyclable and eco-friendly demand for highly innovative materials made from biomass. This book is an ideal source of information for scientific and industrial researchers working in materials science. - Gathers together a broad spectrum of research on nanocellulose, with emphasis on the outstanding reinforcing potential when nanocellulose is included into a polymer matrix or as an additive to paper - Demonstrates systematic approaches and investigations from processing, design, characterization and applications of nanocellulose - Presents a useful reference and technical guide for nanocomposite materials R&D sectors, university academics and postgraduate students (Masters and PhD) and industrialists working in material commercialization




Handbook of Fibrous Materials, 2 Volumes


Book Description

Edited by a leading expert in the field with contributions from experienced researchers in fibers and textiles, this handbook reviews the current state of fibrous materials and provides a broad overview of their use in research and development. Volume One focuses on the classes of fibers, their production and characterization, while the second volume concentrates on their applications, including emerging ones in the areas of energy, environmental science and healthcare. Unparalleled knowledge of high relevance to academia and industry.




Advanced High Strength Natural Fibre Composites in Construction


Book Description

Advanced High Strength Natural Fibre Composites in Construction provides the basic framework and knowledge required for the efficient and sustainable use of natural fiber composites as a structural and building material, along with information on the ongoing efforts to improve the efficiency of use and competitiveness of these composites. Areas of particular interest include understanding the nature and behavior of raw materials and their functional contributions to the advanced architectures of high strength composites (Part 1), discussing both traditional and novel manufacturing technologies for various advanced natural fiber construction materials (Part 2), examining the parameters and performance of the composites (Part 3), and finally commenting on the associated codes, standards, and sustainable development of advanced high strength natural fiber composites for construction. This exposition will be based on well understood environmental science as it applies to construction (Part 4). The book is aimed at academics, research scholars, and engineers, and will serve as a most valuable text or reference book that challenges undergraduate and postgraduate students to think beyond standard practices when designing and creating novel construction materials. - Presents the first comprehensive review on the efficient and sustainable use of natural fiber composites in construction and building materials - Contains detailed information on the structure, chemical composition, and physical and mechanical properties of natural fibers - Covers both traditional and novel manufacturing technologies for high strength natural fiber composites - Includes material parameters and performance in use, as well as associated codes, standards, and applied case studies - Presents contributions from leading international experts in the field




Interfaces in Particle and Fibre Reinforced Composites


Book Description

Interfaces in Particle and Fibre-Reinforced Composites: From Macro- to Nanoscale addresses recent research findings on the particle-matrix interface at different length scales. The book's main focus is on the reinforcement of materials by particles that can result in a composite material of high stiffness and strength, but it also focuses on how the particle interacts with the (matrix) material, which may be a polymer, biological-based material, ceramic or conventional metal. The different types of particle reinforced composites are discussed, as is load transfer at the particle-matrix interface. Readers will learn how to select materials and about particle structure. Significant progress has been made in applying these approaches, thus making this book a timely piece on recent research findings on the particle-matrix interface at different length scales. - Features wide coverage, from polymer, to ceramics and metal-based particulate composites - Structured in a logical order to cover fundamental studies, computer simulations, experimental techniques and characterization




Mechanical and Dynamic Properties of Biocomposites


Book Description

Mechanical and Dynamic Properties of Biocomposites A comprehensive review of the properties of biocomposites and their applications Mechanical and Dynamic Properties of Biocomposites offers a comprehensive overview of the mechanical and dynamic properties of biocomposites and natural fiber-reinforced polymer composites. This essential resource helps with materials selection in the development of products in the fields of automotive and aerospace engineering as well as the construction of structures in civil engineering. With contributions from a panel of experts in the field, the book reviews the mechanical and damping properties of lingo-cellulosic fibers and their composites. The authors highlight the factors that contribute to the improved properties and their advancements in modern industrialization. Besides, the book is designed to (a) introduce the mechanical and damping properties of lingo-cellulosic fibers and their composites, (b) factors that contribute to improvement in properties such as hybridization, chemical treatment of natural fibers, additive or fillers, etc. and (c) the real-time applications with case studies and future prospects. Key features: Presents viable alternatives to conventional composites Examines the environmentally friendly and favorable mechanical properties of biocomposites Reviews the potential applications of biocomposites in the fields of automotive, mechanical and civil engineering Brings together in one comprehensive resource information found scattered across the professional literature Written for materials scientists, polymer chemists, chemists in industry, civil engineers, construction engineers, and engineering scientists in industry, Mechanical and Dynamic Properties of BIocomposites offers a compreshensive review of the properties and applications of biocomposites.




Natural and Synthetic Fiber Reinforced Composites


Book Description

Natural and Synthetic Fiber Reinforced Composites Discover a comprehensive exploration of fiber reinforced polymers by an expert team of editors Fiber reinforced polymer (FRP) composites offer several unique properties that make them ideal for use in a wide range of industries, from automotive and aerospace to marine, construction, and co-industrial. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications, a distinguished team of mechanical engineers delivers a comprehensive overview of fiber reinforced composites. This edited volume includes thorough discussions of glass-, cotton-, and carbon-fiber reinforced materials, as well as the tribological properties and non-structural applications of synthetic fiber composites. Readers will also find practical explorations of the structural evolution, mechanical features, and future possibilities of fiber, textile, and nano-cementitious materials. The physical and chemical properties of cotton fiber-based composites are explored at length, as are the extraordinary mechanical, thermal, electrical, electronic, and field emission properties of carbon nanotubes. This singular book also includes: A thorough discussion of recent advancements in natural fiber reinforced polymer composites, their implications, and the opportunities that arise as a result A comprehensive exploration of the thermal behavior of natural fiber-based composites An insightful review of the literature on sisal fiber with polymer matrices A response to the growing research gap in the existing literature regarding natural fiber-based polymer composites and solutions to address it Perfect for scientists, engineers, professors, and students working in areas involving natural and synthetic reinforced polymers and composites, Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications offers a one-of-a-kind resource to help readers understand a critical and rapidly evolving technology.




Hybrid Fiber Composites


Book Description

Fiber-reinforced composites are exceptionally versatile materials whose properties can be tuned to exhibit a variety of favorable properties such as high tensile strength and resistance against wear or chemical and thermal influences. Consequently, these materials are widely used in various industrial fields such as the aircraft, marine, and automobile industry. After an overview of the general structures and properties of hybrid fiber composites, the book focuses on the manufacturing and processing of these materials and their mechanical performance, including the elucidation of failure mechanisms. A comprehensive chapter on the modeling of hybrid fiber composites from micromechanical properties to macro-scale material behavior is followed by a review of applications of these materials in structural engineering, packaging, and the automotive and aerospace industries.