Central Extensions, Galois Groups, and Ideal Class Groups of Number Fields


Book Description

These notes deal with a set of interrelated problems and results in algebraic number theory, in which there has been renewed activity in recent years. The underlying tool is the theory of the central extensions and, in most general terms, the underlying aim is to use class field theoretic methods to reach beyond Abelian extensions. One purpose of this book is to give an introductory survey, assuming the basic theorems of class field theory as mostly recalled in section 1 and giving a central role to the Tate cohomology groups $\hat H{}^{-1}$. The principal aim is, however, to use the general theory as developed here, together with the special features of class field theory over $\mathbf Q$, to derive some rather strong theorems of a very concrete nature, with $\mathbf Q$ as base field. The specialization of the theory of central extensions to the base field $\mathbf Q$ is shown to derive from an underlying principle of wide applicability. The author describes certain non-Abelian Galois groups over the rational field and their inertia subgroups, and uses this description to gain information on ideal class groups of absolutely Abelian fields, all in entirely rational terms. Precise and explicit arithmetic results are obtained, reaching far beyond anything available in the general theory. The theory of the genus field, which is needed as background as well as being of independent interest, is presented in section 2. In section 3, the theory of central extension is developed. The special features over ${\mathbf Q}$ are pointed out throughout. Section 4 deals with Galois groups, and applications to class groups are considered in section 5. Finally, section 6 contains some remarks on the history and literature, but no completeness is attempted.







Quadratic Number Fields


Book Description

This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.




Algebraic Number Theory


Book Description

From the reviews of the first printing, published as Volume 62 of the Encyclopaedia of Mathematical Sciences: "... The author succeeded in an excellent way to describe the various points of view under which Class Field Theory can be seen. ... In any case the author succeeded to write a very readable book on these difficult themes." Monatshefte fuer Mathematik, 1994 "... Koch's book is written mostly for non-specialists. It is an up-to-date account of the subject dealing with mostly general questions. Special results appear only as illustrating examples for the general features of the theory. It is supposed that the reader has good general background in the fields of modern (abstract) algebra and elementary number theory. We recommend this volume mainly to graduate studens and research mathematicians." Acta Scientiarum Mathematicarum, 1993




Introduction to the Construction of Class Fields


Book Description

A broad introduction to quadratic forms, modular functions, interpretation by rings and ideals, class fields by radicals and more. 1985 ed.




Number Theory


Book Description

Monumental proceedings (very handsomely produced) of a major international conference. The book contains 74 refereed articles which, apart from a few survey papers of peculiar interest, are mostly research papers (63 in English, 11 in French). The topics covered reflect the full diversity of the current trends and activities in modern number theory: elementary, algebraic and analytic number theory; constructive (computational) number theory; elliptic curves and modular forms; arithmetical geometry; transcendence; quadratic forms; coding theory. (NW) Annotation copyrighted by Book News, Inc., Portland, OR




New Horizons in pro-p Groups


Book Description

A pro-p group is the inverse limit of some system of finite p-groups, that is, of groups of prime-power order where the prime - conventionally denoted p - is fixed. Thus from one point of view, to study a pro-p group is the same as studying an infinite family of finite groups; but a pro-p group is also a compact topological group, and the compactness works its usual magic to bring 'infinite' problems down to manageable proportions. The p-adic integers appeared about a century ago, but the systematic study of pro-p groups in general is a fairly recent development. Although much has been dis covered, many avenues remain to be explored; the purpose of this book is to present a coherent account of the considerable achievements of the last several years, and to point the way forward. Thus our aim is both to stimulate research and to provide the comprehensive background on which that research must be based. The chapters cover a wide range. In order to ensure the most authoritative account, we have arranged for each chapter to be written by a leading contributor (or contributors) to the topic in question. Pro-p groups appear in several different, though sometimes overlapping, contexts.




Representation Theory and Number Theory in Connection with the Local Langlands Conjecture


Book Description

The Langlands Program summarizes those parts of mathematical research belonging to the representation theory of reductive groups and to class field theory. These two topics are connected by the vision that, roughly speaking, the irreducible representations of the general linear group may well serve as parameters for the description of all number fields. In the local case, the base field is a given $p$-adic field $K$ and the extension theory of $K$ is seen as determined by the irreducible representations of the absolute Galois group $G_K$ of $K$. Great progress has been made in establishing correspondence between the supercuspidal representations of $GL(n,K)$ and those irreducible representations of $G_K$ whose degrees divide $n$. Despite these advances, no book or paper has presented the different methods used or even collected known results. This volume contains the proceedings of the conference ``Representation Theory and Number Theory in Connection with the Local Langlands Conjecture,'' held in December 1985 at the University of Augsburg. The program of the conference was divided into two parts: (i) the representation theory of local division algebras and local Galois groups, and the Langlands conjecture in the tame case; and (ii) new results, such as the case $n=p$, the matching theorem, principal orders, tame Deligne representations, classification of representations of $GL(n)$, and the numerical Langlands conjecture. The collection of papers in this volume provides an excellent account of the current state of the local Langlands Program.




Infinite Algebraic Extensions of Finite Fields


Book Description

Over the last several decades there has been a renewed interest in finite field theory, partly as a result of important applications in a number of diverse areas such as electronic communications, coding theory, combinatorics, designs, finite geometries, cryptography, and other portions of discrete mathematics. In addition, a number of recent books have been devoted to the subject. Despite the resurgence in interest, it is not widely known that many results concerning finite fields have natural generalizations to abritrary algebraic extensions of finite fields. The purpose of this book is to describe these generalizations. After an introductory chapter surveying pertinent results about finite fields, the book describes the lattice structure of fields between the finite field $GF(q)$ and its algebraic closure $\Gamma (q)$. The authors introduce a notion, due to Steinitz, of an extended positive integer $N$ which includes each ordinary positive integer $n$ as a special case. With the aid of these Steinitz numbers, the algebraic extensions of $GF(q)$ are represented by symbols of the form $GF(q^N)$. When $N$ is an ordinary integer $n$, this notation agrees with the usual notation $GF(q^n)$ for a dimension $n$ extension of $GF(q)$. The authors then show that many of the finite field results concerning $GF(q^n)$ are also true for $GF(q^N)$. One chapter is devoted to giving explicit algorithms for computing in several of the infinite fields $GF(q^N)$ using the notion of an explicit basis for $GF(q^N)$ over $GF(q)$. Another chapter considers polynomials and polynomial-like functions on $GF(q^N)$ and contains a description of several classes of permutation polynomials, including the $q$-polynomials and the Dickson polynomials. Also included is a brief chapter describing two of many potential applications. Aimed at the level of a beginning graduate student or advanced undergraduate, this book could serve well as a supplementary text for a course in finite field theory.