Ceramic Electrolytes For All-solid-state Li Batteries


Book Description

All-solid-state batteries have gained much attention as the next-generation batteries. This book is about various Li ion ceramic electrolytes and their applications to all-solid-state battery. It contains a wide range of topics from history of ceramic electrolytes and ion conduction mechanisms to recent research achievements. Here oxide-type and sulfide-type ceramic electrolytes are described in detail. Additionally, their applications to all-solid-state batteries, including Li-air battery and Li-S battery, are reviewed.Consisting of fundamentals and advanced technology, this book would be suitable for beginners in the research of ceramic electrolytes; it can also be used by scientists and research engineers for more advanced development.




Handbook Of Solid State Batteries (Second Edition)


Book Description

Solid-state batteries hold the promise of providing energy storage with high volumetric and gravimetric energy densities at high power densities, yet with far less safety issues relative to those associated with conventional liquid or gel-based lithium-ion batteries. Solid-state batteries are envisioned to be useful for a broad spectrum of energy storage applications, including powering automobiles and portable electronic devices, as well as stationary storage and load-leveling of renewably generated energy. This comprehensive handbook covers a wide range of topics related to solid-state batteries, including advanced enabling characterization techniques, fundamentals of solid-state systems, novel solid electrolyte systems, interfaces, cell-level studies, and three-dimensional architectures. It is directed at physicists, chemists, materials scientists, electrochemists, electrical engineers, battery technologists, and evaluators of present and future generations of power sources. This handbook serves as a reference text providing state-of-the-art reviews on solid-state battery technologies, as well as providing insights into likely future developments in the field. It is extensively annotated with comprehensive references useful to the student and practitioners in the field.




Ceramic and Specialty Electrolytes for Energy Storage Devices


Book Description

Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.




Materials for Lithium-Ion Batteries


Book Description

A lithium-ion battery comprises essentially three components: two intercalation compounds as positive and negative electrodes, separated by an ionic-electronic electrolyte. Each component is discussed in sufficient detail to give the practising engineer an understanding of the subject, providing guidance on the selection of suitable materials in actual applications. Each topic covered is written by an expert, reflecting many years of experience in research and applications. Each topic is provided with an extensive list of references, allowing easy access to further information. Readership: Research students and engineers seeking an expert review. Graduate courses in electrical drives can also be designed around the book by selecting sections for discussion. The coverage and treatment make the book indispensable for the lithium battery community.




Lithium Batteries


Book Description

Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.




Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set


Book Description

This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.




Solid State Batteries: Materials Design and Optimization


Book Description

The field of solid state ionics is multidisciplinary in nature. Chemists, physicists, electrochimists, and engineers all are involved in the research and development of materials, techniques, and theoretical approaches. This science is one of the great triumphs of the second part of the 20th century. For nearly a century, development of materials for solid-state ionic technology has been restricted. During the last two decades there have been remarkable advances: more materials were discovered, modem technologies were used for characterization and optimization of ionic conduction in solids, trial and error approaches were deserted for defined predictions. During the same period fundamental theories for ion conduction in solids appeared. The large explosion of solid-state ionic material science may be considered to be due to two other influences. The first aspect is related to economy and connected with energy production, storage, and utilization. There are basic problems in industrialized countries from the economical, environmental, political, and technological points of view. The possibility of storing a large amount of utilizable energy in a comparatively small volume would make a number of non-conventional intermittent energy sources of practical convenience and cost. The second aspect is related to huge increase in international relationships between researchers and exchanges of results make considerable progress between scientists; one find many institutes joined in common search programs such as the material science networks organized by EEC in the European countries.




Solid Electrolytes for Advanced Applications


Book Description

This book highlights the state of the art in solid electrolytes, with particular emphasis on lithium garnets, electrolyte-electrode interfaces and all-solid-state batteries based on lithium garnets. Written by an international group of renowned experts, the book addresses how garnet-type solid electrolytes are contributing to the development of safe high energy density Li batteries. Unlike the flammable organic liquid electrolyte used in existing rechargeable Li batteries, garnet-type solid electrolytes are intrinsically chemically stable in contact with metallic lithium and potential positive electrodes, while offering reasonable Li conductivity. The book's respective chapters cover a broad spectrum of topics related to solid electrolytes, including interfacial engineering to resolve the electrolyte-electrode interfaces, the latest developments in the processing of thin and ultrathin lithium garnet membranes, and fabrication strategies for the high-performance solid-state batteries.This highly informative and intriguing book will appeal to postgraduate students and researchers at academic and industrial laboratories with an interest in the advancement of high energy-density lithium metal batteries




Polymer Electrolytes


Book Description

A comprehensive overview of the main characterization techniques of polymer electrolytes and their applications in electrochemical devices Polymer Electrolytes is a comprehensive and up-to-date guide to the characterization and applications of polymer electrolytes. The authors ? noted experts on the topic ? discuss the various characterization methods, including impedance spectroscopy and thermal characterization. The authors also provide information on the myriad applications of polymer electrolytes in electrochemical devices, lithium ion batteries, supercapacitors, solar cells and electrochromic windows. Over the past three decades, researchers have been developing new polymer electrolytes and assessed their application potential in electrochemical and electrical power generation, storage, and conversion systems. As a result, many new polymer electrolytes have been found, characterized, and applied in electrochemical and electrical devices. This important book: -Reviews polymer electrolytes, a key component in electrochemical power sources, and thus benefits scientists in both academia and industry -Provides an interdisciplinary resource spanning electrochemistry, physical chemistry, and energy applications -Contains detailed and comprehensive information on characterization and applications of polymer electrolytes Written for materials scientists, physical chemists, solid state chemists, electrochemists, and chemists in industry professions, Polymer Electrolytes is an essential resource that explores the key characterization techniques of polymer electrolytes and reveals how they are applied in electrochemical devices.




Lithium Process Chemistry


Book Description

Lithium Process Chemistry: Resources, Extraction, Batteries and Recycling presents, for the first time, the most recent developments and state-of-the-art of lithium production, lithium-ion batteries, and their recycling. The book provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries, including terminology related to these two fields. It is of particular interest to electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries. It is also useful for both teachers and students, presenting an overview on Li production, Li-ion battery technologies, and lithium battery recycling processes that is accompanied by numerous graphical presentations of different battery systems and their electrochemical performances. The book represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Provides fundamental and theoretical knowledge on hydrometallurgy and electrochemistry in lithium-ion batteries - Represents the first time that hydrometallurgy and electrochemistry on lithium-ion batteries are assembled in one unique source. - Ideal for both electrochemists who usually have no knowledge in hydrometallurgy and hydrometallurgists not familiar with electrochemistry applied to Li-ion batteries - Presents recent developments, as well as challenges in lithium production and lithium-ion battery technologies and their recycling - Covers examples of Li processes production with schematics, also including numerous graphical presentations of different battery systems and their electrochemical performances