Electronic Materials Handbook


Book Description

Volume 1: Packaging is an authoritative reference source of practical information for the design or process engineer who must make informed day-to-day decisions about the materials and processes of microelectronic packaging. Its 117 articles offer the collective knowledge, wisdom, and judgement of 407 microelectronics packaging experts-authors, co-authors, and reviewers-representing 192 companies, universities, laboratories, and other organizations. This is the inaugural volume of ASMAs all-new ElectronicMaterials Handbook series, designed to be the Metals Handbook of electronics technology. In over 65 years of publishing the Metals Handbook, ASM has developed a unique editorial method of compiling large technical reference books. ASMAs access to leading materials technology experts enables to organize these books on an industry consensus basis. Behind every article. Is an author who is a top expert in its specific subject area. This multi-author approach ensures the best, most timely information throughout. Individually selected panels of 5 and 6 peers review each article for technical accuracy, generic point of view, and completeness.Volumes in the Electronic Materials Handbook series are multidisciplinary, to reflect industry practice applied in integrating multiple technology disciplines necessary to any program in advanced electronics. Volume 1: Packaging focusing on the middle level of the electronics technology size spectrum, offers the greatest practical value to the largest and broadest group of users. Future volumes in the series will address topics on larger (integrated electronic assemblies) and smaller (semiconductor materials and devices) size levels.




Ceramic Materials for Electronics


Book Description

The Third Edition of Ceramic Materials for Electronics studies a wide range of ceramic materials, including insulators, conductors, piezoelectrics, and ferroelectrics, through detailed discussion of their properties, characterization, fabrication, and applications in electronics. The author summarizes the latest trends and advancements in the field, and explores important topics such as ceramic thin film, functional device technology, and thick film technology. Edited by a leading expert on the subject, this new edition includes more than 150 pages of new information; restructured reference materials, figures, and tables; as well as additional device application-oriented segments.




Advanced Electronic Packaging


Book Description

As in the First Edition, each chapter in this new Second Edition is authored by one or more acknowledged experts and then carefully edited to ensure a consistent level of quality and approach throughout. There are new chapters on passive devices, RF and microwave packaging, electronic package assembly, and cost evaluation and assembly, while organic and ceramic substrates are now covered in separate chapters. All the hallmarks of the First Edition, which became an industry standard and a popular graduate-level textbook, have been retained. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley Makerting Department.




Handbook of Electronic Package Design


Book Description

Both a handbook for practitioners and a text for use in teaching electronic packaging concepts, guidelines, and techniques. The treatment begins with an overview of the electronics design process and proceeds to examine the levels of electronic packaging and the fundamental issues in the development




Materials for Electronic Packaging


Book Description

Although materials play a critical role in electronic packaging, the vast majority of attention has been given to the systems aspect. Materials for Electronic Packaging targets materials engineers and scientists by focusing on the materials perspective. The last few decades have seen tremendous progress in semiconductor technology, creating a need for effective electronic packaging. Materials for Electronic Packaging examines the interconnections, encapsulations, substrates, heat sinks and other components involved in the packaging of integrated circuit chips. These packaging schemes are crucial to the overall reliability and performance of electronic systems. - Consists of 16 self-contained chapters, contributed by a variety of active researchers from industrial, academic and governmental sectors - Addresses the need of materials scientists/engineers, electrical engineers, mechanical engineers, physicists and chemists to acquire a thorough knowledge of materials science - Explains how the materials for electronic packaging determine the overall effectiveness of electronic systems




Electronic Enclosures, Housings and Packages


Book Description

Electronic Enclosures, Housings and Packages considers the problem of heat management for electronics from an encasement perspective. It addresses enclosures and their applications for industrial electronics, as well as LED lighting solutions for stationary and mobile markets. The book introduces fundamental concepts and defines dimensions of success in electrical enclosures. Other chapters discuss environmental considerations, shielding, standardization, materials selection, thermal management, product design principles, manufacturing techniques and sustainability. Final chapters focus on business fundamentals by outlining successful technical propositions and potential future directions.







Ceramic Interconnect Technology Handbook


Book Description

Ceramics were among the first materials used as substrates for mass-produced electronics, and they remain an important class of packaging and interconnect material today. Most available information about ceramic electronics is either outdated or focused on their materials science characteristics. The Ceramic Interconnect Technology Handbook goes beyond the traditional approach by first surveying the unique properties of ceramics and then discussing design, processing, fabrication, and integration, as well as packaging and interconnect technologies. Collecting contributions from an outstanding panel of experts, this book offers an up-to-date overview of modern ceramic electronics, from design and material selection to manufacturing and implementation. Beginning with an overview of the development, properties, advantages, and applications of ceramics, coverage spans electrical design, testing, simulation, thermomechanical design, screen printing, multilayer ceramics, photo-defined and photo-imaged films, copper interconnects for ceramic substrates, and integrated passive devices in ceramic substrates. It also offers a detailed review of the surface, thermal, mechanical, and electrical properties of various ceramics as well as the processing of high- and low-temperature cofired ceramic (HTCC and LTCC) substrates. Opening new vistas and avenues of advancement, the Ceramic Interconnect Technology Handbook is the only source for comprehensive discussion and analysis of nearly every facet of ceramic interconnect technology and applications.




Flexible Electronic Packaging and Encapsulation Technology


Book Description

Flexible Electronic Packaging and Encapsulation Technology A systematic introduction to the future of electronic packaging Electronic packaging materials are among the most important components of the broader electronics industry, capable of facilitating heat dissipation, redistributing stress on electronic components, and providing environmental protections for electronic systems. Recent advances in integrated circuits, especially the development of flexible electronic technology, have placed increasingly stringent demands on the capabilities of electronic packaging. These technologies have the potential to reshape our world, and they demand a generation of engineers capable of harnessing that potential. Flexible Electronic Packaging and Encapsulation Technology meets this demand with an introduction to the cutting-edge technologies available to package electronic components, as well as the testing methods and applications that bring these technologies to bear on the industry. These packaging technologies promise to bring lightness, flexibility, and environmental friendliness to the next generation of electronic systems. Flexible Electronic Packaging and Encapsulation Technology readers will also find: Survey of commercial electronic packaging materials and patents for reference purposes Guidelines for designing high-performance packaging materials with novel structures An authorial team of leading researchers in the field Flexible Electronic Packaging and Encapsulation Technology is ideal for materials scientists, electronics engineers, solid state physicists, professionals in the semiconductor industry, and any other researchers or professionals working with electronic systems.