Ceramics Science and Technology, Volume 4


Book Description

Although ceramics have been known to mankind literally for millennia, research has never ceased. Apart from the classic uses as a bulk material in pottery, construction, and decoration, the latter half of the twentieth century saw an explosive growth of application fields, such as electrical and thermal insulators, wear-resistant bearings, surface coatings, lightweight armour, and aerospace materials. In addition to plain, hard solids, modern ceramics come in many new guises such as fabrics, ultrathin films, microstructures and hybrid composites. Built on the solid foundations laid down by the 20-volume series Materials Science and Technology, Ceramics Science and Technology picks out this exciting material class and illuminates it from all sides. Materials scientists, engineers, chemists, biochemists, physicists and medical researchers alike will fi nd this work a treasure trove for a wide range of ceramics knowledge from theory and fundamentals to practical approaches and problem solutions.




Ceramics Science and Technology, Volume 1


Book Description

Although ceramics have been known to mankind literally for millennia, research has never ceased. Apart from the classic uses as a bulk material in pottery, construction, and decoration, the latter half of the twentieth century saw an explosive growth of application fields, such as electrical and thermal insulators, wear-resistant bearings, surface coatings, lightweight armour, or aerospace materials. In addition to plain, hard solids, modern ceramics come in many new guises such as fabrics, ultrathin films, microstructures and hybrid composites. Built on the solid foundations laid down by the 20-volume series Materials Science and Technology, Ceramics Science and Technology picks out this exciting material class and illuminates it from all sides. Materials scientists, engineers, chemists, biochemists, physicists and medical researchers alike will find this work a treasure trove for a wide range of ceramics knowledge from theory and fundamentals to practical approaches and problem solutions.




Ceramics Science and Technology, Volume 2


Book Description

Although ceramics have been known to mankind literally for millennia, research has never ceased. Apart from the classic uses as a bulk material in pottery, construction, and decoration, the latter half of the twentieth century saw an explosive growth of application fields, such as electrical and thermal insulators, wear-resistant bearings, surface coatings, lightweight armour, or aerospace materials. In addition to plain, hard solids, modern ceramics come in many new guises such as fabrics, ultrathin films, microstructures and hybrid composites. Built on the solid foundations laid down by the 20-volume series Materials Science and Technology, Ceramics Science and Technology picks out this exciting material class and illuminates it from all sides. Materials scientists, engineers, chemists, biochemists, physicists and medical researchers alike will find this work a treasure trove for a wide range of ceramics knowledge from theory and fundamentals to practical approaches and problem solutions.




Progress in Ceramic Science


Book Description

Progress in Ceramic Science







Ceramic and Specialty Electrolytes for Energy Storage Devices


Book Description

Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.




Advanced Ceramics for Energy Conversion and Storage


Book Description

In order to enable an affordable, sustainable, fossil-free future energy supply, research activities on relevant materials and related technologies have been intensified in recent years, Advanced Ceramics for Energy Conversion and Storage describes the current state-of-the-art concerning materials, properties, processes, and specific applications. Academic and industrial researchers, materials scientists, and engineers will be able to get a broad overview of the use of ceramics in energy applications, while at the same time become acquainted with the most recent developments in the field. With chapters written by recognized experts working in their respective fields the book is a valuable reference source covering the following application areas: ceramic materials and coatings for gas turbines; heat storage and exchange materials for solar thermal energy; ceramics for nuclear energy; ceramics for energy harvesting (thermoelectrics, piezoelectrics, and sunlight conversion); ceramic gas separation membranes; solid oxide fuel cells and electrolysers; and electrochemical storage in battery cells. Advanced Ceramics for Energy Conversion and Storage offers a sound base for understanding the complex requirements related to the technological fields and the ceramic materials that make them possible. The book is also suitable for people with a solid base in materials science and engineering that want to specialize in ceramics. - Presents an extensive overview of ceramic materials involved in energy conversion and storage - Updates on the tremendous progress that has been achieved in recent years - Showcases authors at the forefront of their fields, including results from the huge amount of published data - Provides a list of requirements for the materials used for each energy technology - Includes an evaluation and comparison of materials available, including their structure, properties and performance




Ceramic Technology and Processing


Book Description

Perfect for the new technician or engineer entering the ceramics industry as well as for the ""old hand"" who needs an update on some aspect of ceramics processing, this resource provides practical laboratory-oriented answers to such typical processing problems as particle segregation, agglomeration, contamination, pressure gradients, adherence to tooling, and temperature gradients during drying and firing.The author examines the difficulties of practical testing and processing in the ceramic laboratory, such as vast differences in scale and equipment, and shows how to evaluate results taking such variables into account. Once the laboratory work is satisfactorily completed, the rest of the book explores serious issues involved in transferring technology from the lab bench to the plant floor and then to the customer. The author gives advice on dealing with real-life problems such as allocating human and capital resources and overcoming customer wariness of being first to try new procedures and processes.Each section contains practical, hands-on suggestions on performing and sometimes avoiding certain tasks, bringing to the reader key information that is at best sparsely available in the industry. As the author states, ""Laboratory skills are gained by hands-on experience. The intent of this book is to accelerate the process.""




Ceramic Fabrication Processes


Book Description

Treatise on Materials Science and Technology, Volume 9: Ceramic Fabrication Processes covers the fundamental properties and characterization of materials, ranging from simple solids to complex heterophase systems. The book discusses the powder preparation processes; milling; the characterization of ceramic powders; and the effects of powder characteristics. The text also describes dry pressing; hot pressing; isostatic pressing; slip casting; doctor-blade process; firing; and ceramic machining and surface finishing. Surface treatments; mechanical behavior; and methods of measuring surface texture are also considered. The book further tackles crystal growth as well as controlled solidification in ceramic eutectic systems. The text also looks into controlled grain growth. Professional scientists and engineers, as well as graduate students in materials science and associated fields will find the book invaluable.




Sol-Gel Science and Technology


Book Description

Sol-Gel Science and Technology covers optical, electronic and magnetic, chemical, mechanical, biomedical and biotechnological materials. Concerning the microstructures, the sol-gel method applies to porous materials, dense materials like glasses and ceramics, organic-inorganic hybrids and nanocomposites. The four volumes of this reference treat four areas that are timely, important and seeing great research activity: -Sol-gel prepared ferroelectrics and related materials. -Sol-gel processing of titanium oxides: photocatalyst and other applications. -Sol-gel prepared organic-inorganic hybrids and nanocomposites. -Sol-gel processing of porous materials: application to catalysts, enzymes, chemical analysis, sensors, and membranes. The goal of these four volumes is to disseminate the recent research results published in recent issues of Journal of Sol-Gel Science and Technology, which is a unique journal devoted to Sol-Gel.