Chain-Scattering Approach to H∞-Control


Book Description

The advent of H∞-control was a truly remarkable innovation in multivariable theory. It eliminated the classical/modern dichotomy that had been a major source of the long-standing skepticism about the applicability of modern control theory, by amalgamating the "philosophy" of classical design with "computation" based on the state-space problem setting. It enhanced the application by deepening the theory mathematically and logically, not by weakening it as was done by the reformers of modern control theory in the early 1970s. The purpose of this book is to provide a natural theoretical framework that is understandable with little mathematical background. The notion of chain-scattering, well known in classical circuit theory, but new to control theorists, plays a fundamental role in this book. It captures an essential feature of the control systems design, reducing it to a J-lossless factorization, which leads naturally to the idea of H-infinity-control. The J-lossless conjugation, an essentially new notion in linear system theory, then provides a powerful tool for computing this factorization. Thus the chain-scattering representation, the J-lossless factorization, and the J-lossless conjugation are the three key notions that provide the thread of development in this book. The book is completely self contained and requires little mathematical background other than some familiarity with linear algebra. It will be useful to applied mathematicians and practicing engineers in control system design and as a text for a graduate course in H∞-control and its applications.




Control of Uncertain Dynamic Systems


Book Description

This book is a collection of 34 papers presented by leading researchers at the International Workshop on Robust Control held in San Antonio, Texas in March 1991. The common theme tying these papers together is the analysis, synthesis, and design of control systems subject to various uncertainties. The papers describe the latest results in parametric understanding, H8 uncertainty, l1 optical control, and Quantitative Feedback Theory (QFT). The book is the first to bring together all the diverse points of view addressing the robust control problem and should strongly influence development in the robust control field for years to come. For this reason, control theorists, engineers, and applied mathematicians should consider it a crucial acquisition for their libraries.




Robust and Optimal Control


Book Description

A Two-port Framework for Robust and Optimal Control introduces an alternative approach to robust and optimal controller synthesis procedures for linear, time-invariant systems, based on the two-port system widespread in electrical engineering. The novel use of the two-port system in this context allows straightforward engineering-oriented solution-finding procedures to be developed, requiring no mathematics beyond linear algebra. A chain-scattering description provides a unified framework for constructing the stabilizing controller set and for synthesizing H2 optimal and H∞ sub-optimal controllers. Simple yet illustrative examples explain each step. A Two-port Framework for Robust and Optimal Control features: · a hands-on, tutorial-style presentation giving the reader the opportunity to repeat the designs presented and easily to modify them for their own programs; · an abundance of examples illustrating the most important steps in robust and optimal design; and · end-of-chapter exercises. To further demonstrate the proposed approaches, in the last chapter an application case study is presented which demonstrates the use of the framework in a real-world control system design and helps the reader quickly move on with their own challenges. MATLAB® codes used in examples throughout the book and solutions to selected exercise questions are available for download. The text will have particular resonance for researchers in control with an electrical engineering background, who wish to avoid spending excessive time in learning complex mathematical, theoretical developments but need to know how to deal with robust and optimal control synthesis problems. Please see [http://km.emotors.ncku.edu.tw/class/hw1.html] for solutions to the exercises provided in this book.




Trends in Control


Book Description

This book contains the text of the plenary lectures and the mini-courses of the European Control Conference (ECC 95) held in Rome, Italy, September 5-September 8, 1995. In particular, the book includes nine essays in which a selected number of prominent authorities present their views on some of the most recent developments in the theory and practice of control systems design and three self-contained sets of lecture notes. Some of the essays are focused on the topic of robust control. The article by J. Ackermann describes how to robustly control the rotational motions of a vehicle, to the purpose of simplifying the driver's task. The contribution by H. K wakernaak presents a detailed discussion of the requirements that performance and robustness impose on control systems design and of the symmetric roles of sensitivity and complementary sensitivity functions. The article by P. Boulet, B. A. Francis, P. C . Hughes and T. Hong describes an experimental testbed facility, called Daisy, whose dynamics emulate those of a real large flexible space structure and whose purpose is to test advanced identification and control design methods. The article of K. Glover discusses recent advances in uncertain system modeling, analysis and design, with ref erence to a flight control case study that has been test flown. The other essays describe advances in fundamental problems of control theory. The article by V. A. Yakubovich is a survey of certain new infinite horizon linear-quadratic optimization problems. The contribution by A. S.




Extending H-infinity Control to Nonlinear Systems


Book Description

H-infinity control originated from an effort to codify classical control methods, where one shapes frequency response functions for linear systems to meet certain objectives. H-infinity control underwent tremendous development in the 1980s and made considerable strides toward systematizing classical control. This book addresses the next major issue of how this extends to nonlinear systems. At the core of nonlinear control theory lie two partial differential equations (PDEs). One is a first-order evolution equation called the information state equation, which constitutes the dynamics of the controller. One can view this equation as a nonlinear dynamical system. Much of this volume is concerned with basic properties of this system, such as the nature of trajectories, stability, and, most important, how it leads to a general solution of the nonlinear H-infinity control problem.




Control and Modeling of Complex Systems


Book Description

Hidenori Kimura, renowned system and control theorist, turned 60 years of age in November, 2001. To celebrate this memorable occasion, his friends, collaborators, and former students gathered from all over the world and held a symposium in his honor on November 1 and 2, 2001, at the Sanjo Conference Hall at the University of Tokyo. Reflecting his current research interests, the symposium was entitled "Cybernetics in the 21st Century: Information and Complexity in Control Theory," and it drew nearly 150 attendees. There were twenty-five lectures, on which the present volume is based. Hidenori Kimura was born on November 3, 1941, in Tokyo, just prior to the outbreak of the Second World War. It is not hard to imagine, then, that his early days, like those of so many of his contemporaries, must have been difficult. Fortunately, the war ended in 1945, and his generation found itself thoroughly occupied with the rebuilding effort and with Japan's uphill journey in the last half-century. He entered the University of Tokyo in 1963, received a B. S. in 1965, an M. S. in 1967, and, in 1970, a Ph. D. degree for his dissertation "A Study of Differential Games. " After obtaining his doctorate, he joined the Department of Control En gineering at Osaka University as a research associate, and in 1973 he was promoted to an associate professor.




Fault Diagnosis


Book Description

This comprehensive work presents the status and likely development of fault diagnosis, an emerging discipline of modern control engineering. It covers fundamentals of model-based fault diagnosis in a wide context, providing a good introduction to the theoretical foundation and many basic approaches of fault detection.




Dynamical Systems, Control, Coding, Computer Vision


Book Description

This book is a collection of essays devoted in part to new research direc tions in systems, networks, and control theory, and in part to the growing interaction of these disciplines with new sectors of engineering and applied sciences like coding, computer vision, and hybrid systems. These are new areas of rapid growth and of increasing importance in modern technology. The essays, written by world-leading experts in the field, reproduce and expand the plenary and minicoursejminisymposia invited lectures which were delivered at the Mathematical Theory of Networks and Systems Sym posium (MTNS-98), held in Padova, Italy, on July 6-10, 1998. Systems, control, and networks theory has permeated the development of much of present day technology. The impact has been visible in the past fifty years through the dramatic expansion and achievements of the aerospace and avionics industry, through process control and factory au tomation, robotics, communication signals analysis and synthesis, and, more recently, even finance, to name just the most visible applications. The theory has developed from the early phase of its history when the ba sic tools were elementary complex analysis, Laplace transform, and linear differential equations, to present day, where the mathematics ranges widely from functional analysis, PDE's, abstract algebra, stochastic processes and differential geometry. Irrespective of the particular tools, however, the ba sic unifying paradigms of feedback, stability, optimal control, and recursive filtering, have remained the bulk of the field and continue to be the basic motivation for the theory, coming from the real world.




Indefinite-Quadratic Estimation and Control


Book Description

This monograph presents a unified mathematical framework for a wide range of problems in estimation and control. The authors discuss the two most commonly used methodologies: the stochastic H² approach and the deterministic (worst-case) H [infinity] approach. Despite the fundamental differences in the philosophies of these two approaches, the authors have discovered that, if indefinite metric spaces are considered, they can be treated in the same way and are essentially the same. The benefits and consequences of this unification are pursued in detail, with discussions of how to generalize well-known results from H² theory to H [infinity] setting, as well as new results and insight, the development of new algorithms, and applications to adaptive signal processing. The authors deliberately have placed primary emphasis on estimation problems which enable one to solve all the relevant control problems in detail. They also deal mostly with discrete-time systems, since these are the ones most important in current applications.




Linear Control Theory


Book Description

Incorporating recent developments in control and systems research,Linear Control Theory provides the fundamental theoreticalbackground needed to fully exploit control system design software.This logically-structured text opens with a detailed treatment ofthe relevant aspects of the state space analysis of linear systems.End-of-chapter problems facilitate the learning process byencouraging the student to put his or her skills into practice.Features include: * The use of an easy to understand matrix variational technique todevelop the time-invariant quadratic and LQG controllers * A step-by-step introduction to essential mathematical ideas asthey are needed, motivating the reader to venture beyond basicconcepts * The examination of linear system theory as it relates to controltheory * The use of the PBH test to characterize eigenvalues in the statefeedback and observer problems rather than its usual role as a testfor controllability or observability * The development of model reduction via balanced realization * The employment of the L2 gain as a basis for the development ofthe H??? controller for the design of controllers in the presenceof plant model uncertainty Senior undergraduate and postgraduate control engineering studentsand practicing control engineers will appreciate the insight thisself-contained book offers into the intelligent use of today scontrol system software tools.