Endotoxin and the Lungs


Book Description

This work sets out to provide the information necessary for understanding endotoxin and its effects on the lungs, and explicates the difficulties in determining how to manipulate endotoxin pathobiology. The rationale for, and efficacy of, current and experimental treatments for sepsis, adult respiratory distress syndrome and other endotoxin-induced lung injuries are discussed.




Bacterial Exotoxins: How Bacteria Fight the Immune System


Book Description

Bacterial pathogenicity factors are functionally diverse. They may facilitate the adhesion and colonization of bacteria, influence the host immune response, assist spreading of the bacterium by e.g. evading recognition by immune cells, or allow bacteria to dwell within protected niches inside the eukaryotic cell. Exotoxins can be single polypeptides or heteromeric protein complexes that act on different parts of the cells. At the cell surface, they may insert into the membrane to cause damage; bind to receptors to initiate their uptake; or facilitate the interaction with other cell types. For example, bacterial superantigens specifically bind to major histocompatibility complex (MHC) II molecules on the surface of antigen presenting cells and the T cell receptor, while cytolysins cause pore formation. For intracellular activity, exotoxins need to be translocated across the eukaryotic membrane. Gram-negative bacteria can directly inject effector proteins in a receptor-independent manner by use of specialized needle apparatus such as bacterial type II, III, or type IV secretion systems. Other methods of translocation include the phagocytic uptake of bacteria followed by toxin secretion, or receptor-mediated endocytosis which allows the targeting of distinct cell types. Receptor-based uptake is initiated by the binding of heteromeric toxin complexes to the cell surface and completed by the translocation of the effector protein(s) across the endosomal membrane. In the cytosol, toxins interact with specific eukaryotic target proteins to cause post-translational modifications that often result in the manipulation of cellular signalling cascades and inflammatory responses. It has become evident that the actions of some bacterial toxins may exceed their originally assumed cytotoxic function. For example, pore-forming toxins do not only cause cytolysis, but may also induce autophagy, pyroptosis, or activation of the MAPK pathways, resulting in adjustment of the host immune response to infection and modification of inflammatory responses both locally and systemically. Other recently elucidated examples of the immunomodulatory function of cell death-inducing exotoxins include TcdB of Clostridium difficile which activates the inflammasome through modification of cellular Rho GTPases, or the Staphyloccocus d-toxin which activates mast cells. The goal of this research topic was to gather current knowledge on the interaction of bacterial exotoxins and effector proteins with the host immune system. The following 16 research and review articles in this special issue describe mechanisms of immune modification and evasion and provide an overview over the complexity of bacterial toxin interaction with different cells of the immune system.




Damp Indoor Spaces and Health


Book Description

Almost all homes, apartments, and commercial buildings will experience leaks, flooding, or other forms of excessive indoor dampness at some point. Not only is excessive dampness a health problem by itself, it also contributes to several other potentially problematic types of situations. Molds and other microbial agents favor damp indoor environments, and excess moisture may initiate the release of chemical emissions from damaged building materials and furnishings. This new book from the Institute of Medicine examines the health impact of exposures resulting from damp indoor environments and offers recommendations for public health interventions. Damp Indoor Spaces and Health covers a broad range of topics. The book not only examines the relationship between damp or moldy indoor environments and adverse health outcomes but also discusses how and where buildings get wet, how dampness influences microbial growth and chemical emissions, ways to prevent and remediate dampness, and elements of a public health response to the issues. A comprehensive literature review finds sufficient evidence of an association between damp indoor environments and some upper respiratory tract symptoms, coughing, wheezing, and asthma symptoms in sensitized persons. This important book will be of interest to a wide-ranging audience of science, health, engineering, and building professionals, government officials, and members of the public.




Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.




Cytokine-Ion Channel Interactions in Pulmonary Inflammation


Book Description

This Research Topic assembles original contributions and reviews from an international consortium of PIs related to interactions between pro-inflammatory cytokines and ion channels during acute lung injury and chronic heart failure.







The Lung Microbiome


Book Description

Studying the lung microbiome requires a specialist approach to sampling, laboratory techniques and statistical analysis. This Monograph introduces the techniques used and discusses how respiratory sampling, 16S rRNA gene sequencing, metagenomics and the application of ecological theory can be used to examine the respiratory microbiome. It examines the different components of the respiratory microbiome: viruses and fungi in addition to the more frequently studied bacteria. It also considers a range of contexts from the paediatric microbiome and how this develops to disease of all ages including asthma and chronic obstructive pulmonary disease, chronic suppurative lung diseases, interstitial lung diseases, acquired pneumonias, transplantation, cancer and HIV, and the interaction of the respiratory microbiome and the environment.




Principles and Practice of Pediatric Infectious Diseases


Book Description

"In print, online, or on your mobile device, Principles and Practice of Pediatric Infectious Disease provides the comprehensive and actionable coverage you need to understand, diagnose, and manage the ever-changing, high-risk clinical problems caused by infectious diseases in children and adolescents. With new chapters, expanded and updated coverage, and increased worldwide perspectives, this authoritative medical reference offers the latest need-to-know information in an easily-accessible, high-yield format for quick answers and fast, effective intervention!"--Publisher's website.







Fetal and Neonatal Physiology E-Book


Book Description

Fetal and Neonatal Physiology, edited by Drs. Polin, Fox, and Abman, focuses on physiologic developments of the fetus and newborn and their impact on the clinical practice of neonatology. A must for practice, this 4th edition brings you the latest information on genetic therapy, intrauterine infections, brain protection and neuroimaging, and much more. Gain a comprehensive, state-of-the-art understanding of normal and abnormal physiology, and its relationship to disease in the fetus and newborn premature infant, from Dr. Richard Polin and other acknowledged worldwide leaders in the field. Understand the implications of fetal and neonatal physiology through chapters devoted to clinical correlation. Apply the latest insights on genetic therapy, intrauterine infections, brain protection and neuroimaging, and much more. Effectively manage the consequences of intrauterine infections with three new chapters covering intrauterine infection and preterm birth, intrauterine infection and brain injury, and intrauterine infection and chronic lung disease.