Chaos And Forecasting - Proceedings Of The Royal Society Discussion Meeting


Book Description

It is now generally recognised that very simple dynamical systems can produce apparently random behaviour. In the last couple of years, attention has turned to focus on the flip side of this coin: random-looking time series (or random-looking patterns in space) may indeed be the result of very complicated processes or “real noise”, but they may equally well be produced by some very simple mechanism (a low-dimensional attractor). In either case, a long-term prediction will be possible only in probabilistic terms. However, in the very short term, random systems will still be unpredictable but low-dimensional chaotic ones may be predictable (appearances to the contrary). The Royal Society held a two-day discussion meeting on topics covering diverse fields, including biology, economics, geophysics, meteorology, statistics, epidemiology, earthquake science and many others. Each topic was covered by a leading expert in the field. The meeting dealt with different basic approaches to the problem of chaos and forecasting, and covered applications to nonlinear forecasting of both artificially-generated time series and real data from context in the above-mentioned diverse fields. This book marks a rather special and rare occasion on which prominent scientists from different areas converge on the same theme. It forms an informative introduction to the science of chaos, with special reference to real data.




Chaos and Forecasting


Book Description




Chaos in Real Data


Book Description

Chaos in Real Data studies the range of data analytic techniques available to study nonlinear population dynamics for ecological time series. Several case studies are studied using typically short and noisy population data from field and laboratory. A range of modern approaches, such as response surface methodology and mechanistic mathematical modelling, are applied to several case studies. Experts honestly appraise how well these methods have performed on their data. The accessible style of the book ensures its readability for non-quantitative biologists. The data remain available, as benchmarks for future study, on the worldwide web.




Nonlinear Dynamics and Time Series


Book Description

Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It isremarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories of quasiconformal mappings and Teichmuller spaces from these lecture notes. This editionincludes three new chapters. The first, written by Earle and Kra, describes further developments in the theory of Teichmuller spaces and provides many references to the vast literature on Teichmuller spaces and quasiconformal mappings. The second, by Shishikura, describes how quasiconformal mappings have revitalized the subject of complex dynamics. The third, by Hubbard, illustrates the role of these mappings in Thurston's theory of hyperbolic structures on 3-manifolds. Together, these threenew chapters exhibit the continuing vitality and importance of the theory of quasiconformal mappings. This book is a collection of research and expository papers reflecting the interfacing of two fields: nonlinear dynamics (in the physiological and biological sciences) and statistics. It presents theproceedings of a four-day workshop entitled ``Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences'' held at the Centre de Recherches Mathematiques (CRM) in Montreal in July 1995. The goal of the workshop was to provide an exchange forum and to create a link between two diverse groups with a common interest in the analysis of nonlinear time series data. The editors and peer reviewers of this work have attempted to minimize the problems ofmaintaining communication between the different scientific fields. The result is a collection of interrelated papers that highlight current areas of research in statistics that might have particular applicability to nonlinear dynamics and new methodology and open data analysis problems in nonlinear dynamicsthat might find their way into the toolkits and research interests of statisticians. Features: A survey of state-of-the-art developments in nonlinear dynamics time series analysis with open statistical problems and areas for further research. Contributions by statisticians to understanding and improving modern techniques commonly associated with nonlinear time series analysis, such as surrogate data methods and estimation of local Lyapunov exponents. Starting point for both scientists andstatisticians who want to explore the field. Expositions that are readable to scientists outside the featured fields of specialization. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario,Canada).




Nonlinear Dynamics and Time Series


Book Description

Lars Ahlfors's Lectures on Quasiconformal Mappings, based on a course he gave at Harvard University in the spring term of 1964, was first published in 1966 and was soon recognized as the classic it was shortly destined to become. These lectures develop the theory of quasiconformal mappings from scratch, give a self-contained treatment of the Beltrami equation, and cover the basic properties of Teichmuller spaces, including the Bers embedding and the Teichmuller curve. It isremarkable how Ahlfors goes straight to the heart of the matter, presenting major results with a minimum set of prerequisites. Many graduate students and other mathematicians have learned the foundations of the theories of quasiconformal mappings and Teichmuller spaces from these lecture notes. This editionincludes three new chapters. The first, written by Earle and Kra, describes further developments in the theory of Teichmuller spaces and provides many references to the vast literature on Teichmuller spaces and quasiconformal mappings. The second, by Shishikura, describes how quasiconformal mappings have revitalized the subject of complex dynamics. The third, by Hubbard, illustrates the role of these mappings in Thurston's theory of hyperbolic structures on 3-manifolds. Together, these threenew chapters exhibit the continuing vitality and importance of the theory of quasiconformal mappings. This book is a collection of research and expository papers reflecting the interfacing of two fields: nonlinear dynamics (in the physiological and biological sciences) and statistics. It presents theproceedings of a four-day workshop entitled ''Nonlinear Dynamics and Time Series: Building a Bridge Between the Natural and Statistical Sciences'' held at the Centre de Recherches Mathematiques (CRM) in Montreal in July 1995. The goal of the workshop was to provide an exchange forum and to create a link between two diverse groups with a common interest in the analysis of nonlinear time series data. The editors and peer reviewers of this work have attempted to minimize the problems ofmaintaining communication between the different scientific fields. The result is a collection of interrelated papers that highlight current areas of research in statistics that might have particular applicability to nonlinear dynamics and new methodology and open data analysis problems in nonlinear dynamicsthat might find their way into the toolkits and research interests of statisticians. Features: A survey of state-of-the-art developments in nonlinear dynamics time series analysis with open statistical problems and areas for further research. Contributions by statisticians to understanding and improving modern techniques commonly associated with nonlinear time series analysis, such as surrogate data methods and estimation of local Lyapunov exponents. Starting point for both scientists andstatisticians who want to explore the field. Expositions that are readable to scientists outside the featured fields of specialization. Information for our distributors: Titles in this series are copublished with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario,Canada).




Applying Neural Networks


Book Description

This book is designed to enable the reader to design and run a neural network-based project. It presents everything the reader will need to know to ensure the success of such a project. The book contains a free disk with C and C++ programs, which implement many of the techniques discussed in the book.




Limit Theorems For Nonlinear Cointegrating Regression


Book Description

This book provides the limit theorems that can be used in the development of nonlinear cointegrating regression. The topics include weak convergence to a local time process, weak convergence to a mixture of normal distributions and weak convergence to stochastic integrals. This book also investigates estimation and inference theory in nonlinear cointegrating regression.The core context of this book comes from the author and his collaborator's current researches in past years, which is wide enough to cover the knowledge bases in nonlinear cointegrating regression. It may be used as a main reference book for future researchers.




Knowledge Management


Book Description

For ensuring sustained success in a competitive global market scenario, business enterprises are seeking to unearth their own latent knowledge treasures. This book explicitly explains how stringent strategies and practices emphasized under knowledge management can help streamline activities of the organization and conserve its resources. Divided into ten chapters the book elaborates on the concepts, theories and principles governing knowledge management. Beginning with history and evolution of knowledge, its growth and impact on the society, it further explains the role of knowledge management towards Corporate Social Responsibility (CSR). The chapters on Managing Competitiveness and Managing Knowledge Force discuss how innovative business strategies can help in achieving new landmarks and how the employees of an organization can turn into a knowledge force to churn out profit and to achieve success. Two important aspects of knowledge management, namely, Certainty Management and Uncertainty Control are also discussed to explain how an organization can flourish by predicting and controlling the uncertainties and managing the obvious situations. The highlight of this book is the inclusion of well-analyzed live cases. All the cases demonstrate how seemingly impossible tasks can be successfully managed with an efficient handling of knowledge management principles and practices. Primarily intended for the students of Management, this book can also prove beneficial to the practising managers. KEY FEATURES: Presents a global picture of knowledge management in practice in live shop-floors Incorporates over 550 classified audit probe questions embracing various areas of knowledge management Illustrates the concepts, principles and practices of knowledge management with well-labelled figures, tables and boxes PowerPoint presentations available online at www.phindia.com/mruthyunjaya




Chaos and Forecasting


Book Description




Complex Population Dynamics


Book Description

Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.