Chaos, Information, And The Future Of Physics: The Seaman-rossler Dialogue With Information Perspectives By Burgin And Seaman


Book Description

The main part of the book consists of the dialogue between physicist Otto Rössler, and artist and AI researcher Bill Seaman with the commentaries disclosing information perspective by information scientist Mark Burgin and Bill Seaman. In this dialogue, Rössler and Seaman discuss concepts surrounding Rössler's major research over his lifetime. Additionally, each research topic is linked to the set of papers and books published by Rössler and other related collaborative researchers. The goal is to delineate an intellectual directory for future researchers. The discussed topics being transdisciplinary in nature cross many fields in science and technology. A comprehensive historical bibliography is also included. The work explores many fields germane to theoretical science as Rössler was often quite early in developing these fields and interacting with many famous scientists. This work pertains to information theory, which has often been left out of the historical literature.Burgin as an expert in information theory is providing an information perspective on this dialogue adding historical discussion and relevant scientific and mathematical underpinnings of the discussed ideas. His observations are complemented by Seaman, who presents the synthesis of artistic and scientific outlook.Addendum contains articles describing Rössler's relationships to colleagues from multiple fields, a parable by Rössler and papers related to Rössler's research and theoretical models of processes in the universe.







Chaos, Information, and the Future of Physics


Book Description

The main part of the book consists of the dialogue between physicist Otto Rössler, and artist and AI researcher Bill Seaman with the commentaries disclosing information perspective by information scientist Mark Burgin and Bill Seaman. In this dialogue, Rössler and Seaman discuss concepts surrounding Rössler's major research over his lifetime. Additionally, each research topic is linked to the set of papers and books published by Rössler and other related collaborative researchers. The goal is to delineate an intellectual directory for future researchers. The discussed topics being transdisciplinary in nature cross many fields in science and technology. A comprehensive historical bibliography is also included. The work explores many fields germane to theoretical science as Rössler was often quite early in developing these fields and interacting with many famous scientists. This work pertains to information theory, which has often been left out of the historical literature.Burgin as an expert in information theory is providing an information perspective on this dialogue adding historical discussion and relevant scientific and mathematical underpinnings of the discussed ideas. His observations are complemented by Seaman, who presents the synthesis of artistic and scientific outlook.Addendum contains articles describing Rössler's relationships to colleagues from multiple fields, a parable by Rössler and papers related to Rössler's research and theoretical models of processes in the universe.




Physics of the Future


Book Description

NATIONAL BESTSELLER • The renowned theoretical physicist and national bestselling author of The God Equation details the developments in computer technology, artificial intelligence, medicine, space travel, and more, that are poised to happen over the next century. “Mind-bending…. [An] alternately fascinating and frightening book.” —San Francisco Chronicle Space elevators. Internet-enabled contact lenses. Cars that fly by floating on magnetic fields. This is the stuff of science fiction—it’s also daily life in the year 2100. Renowned theoretical physicist Michio Kaku considers how these inventions will affect the world economy, addressing the key questions: Who will have jobs? Which nations will prosper? Kaku interviews three hundred of the world’s top scientists—working in their labs on astonishing prototypes. He also takes into account the rigorous scientific principles that regulate how quickly, how safely, and how far technologies can advance. In Physics of the Future, Kaku forecasts a century of earthshaking advances in technology that could make even the last centuries’ leaps and bounds seem insignificant.




Chaos


Book Description

The “highly entertaining” New York Times bestseller, which explains chaos theory and the butterfly effect, from the author of The Information (Chicago Tribune). For centuries, scientific thought was focused on bringing order to the natural world. But even as relativity and quantum mechanics undermined that rigid certainty in the first half of the twentieth century, the scientific community clung to the idea that any system, no matter how complex, could be reduced to a simple pattern. In the 1960s, a small group of radical thinkers began to take that notion apart, placing new importance on the tiny experimental irregularities that scientists had long learned to ignore. Miniscule differences in data, they said, would eventually produce massive ones—and complex systems like the weather, economics, and human behavior suddenly became clearer and more beautiful than they had ever been before. In this seminal work of scientific writing, James Gleick lays out a cutting edge field of science with enough grace and precision that any reader will be able to grasp the science behind the beautiful complexity of the world around us. With more than a million copies sold, Chaos is “a groundbreaking book about what seems to be the future of physics” by a writer who has been a finalist for both the Pulitzer Prize and the National Book Award, the author of Time Travel: A History and Genius: The Life and Science of Richard Feynman (Publishers Weekly).




The Future of the Universe


Book Description

An astrophysicist draws upon religion and science in his search for evidence of God. The word "God" shows up increasingly in popular works about modern physics. Some scientists piously see God as a key to deciphering further mysteries of the universe. Others aver that science offers a surer path to God than religion. Arnold Benz, an astrophysicist and a Christian, believes that science and religion, if one takes them seriously, resist seamless integration and harmonization. They are two different approaches to experiencing reality, two different planes that do not intersect, yet it is possible for an observer informed about both planes of inquiry to reflect on how they might relate. Mediating between these two planes of perception, which could be described as the greatest intellectual adventure of our time, requires taking both realms fully in earnest. Arguing that it is senseless to seek God in the first moments of the Big Bang, as though creation were some once-for-all event in the distant past, Benz finds creation occurring throughout the entire development of the cosmos, here and now as well as in the distant future. In the foreground stands the decisive question: What might we expect, and what might we hope for, from the future: chance, chaos, or God?>




Chaotic Harmony


Book Description

This fascinating book written by Ali Sanayei and Otto E. Rössler is not a classic scientific publication, but a vivid dialogue on science, philosophy and the interdisciplinary intersections of science and technology with biographic elements. Chaotic Harmony: A Dialog about Physics, Complexity and Life represents a discussion between Otto Rössler and his colleague and student, focusing on the different areas of science and highlights their mutual relations. The book's concept of interdisciplinary dialogue is unusual nowadays although it has a long tradition in science. It provides insight not only into interesting topics that are often closely linked, but also into the mind of a prominent scientist in the field of physics, chaos and complexity in general. It allows a deep look into the fascinating process of scientific development and discovery and provides a very interesting background of known and unknown facts in the areas of complex processes in physics, cosmology, biology, brains and systems in general. This book will be valuable to all who are interested in science, its evolution and in an unconventional and original look at various issues. Surely it can serve as an inspiration for students, explaining the often overlooked fact that science and philosophy enrich each other.




The Disordered Cosmos


Book Description

From a star theoretical physicist, a journey into the world of particle physics and the cosmos—and a call for a more liberatory practice of science. Winner of the 2021 Los Angeles Times Book Prize in Science & Technology A Finalist for the 2022 PEN/E.O. Wilson Literary Science Writing Award A Smithsonian Magazine Best Science Book of 2021 A Symmetry Magazine Top 10 Physics Book of 2021 An Entropy Magazine Best Nonfiction Book of 2020-2021 A Publishers Weekly Best Nonfiction Book of the Year A Kirkus Reviews Best Nonfiction Book of 2021 A Booklist Top 10 Sci-Tech Book of the Year In The Disordered Cosmos, Dr. Chanda Prescod-Weinstein shares her love for physics, from the Standard Model of Particle Physics and what lies beyond it, to the physics of melanin in skin, to the latest theories of dark matter—along with a perspective informed by history, politics, and the wisdom of Star Trek. One of the leading physicists of her generation, Dr. Chanda Prescod-Weinstein is also one of fewer than one hundred Black American women to earn a PhD from a department of physics. Her vision of the cosmos is vibrant, buoyantly nontraditional, and grounded in Black and queer feminist lineages. Dr. Prescod-Weinstein urges us to recognize how science, like most fields, is rife with racism, misogyny, and other forms of oppression. She lays out a bold new approach to science and society, beginning with the belief that we all have a fundamental right to know and love the night sky. The Disordered Cosmos dreams into existence a world that allows everyone to experience and understand the wonders of the universe.




Complexity


Book Description

“If you liked Chaos, you’ll love Complexity. Waldrop creates the most exciting intellectual adventure story of the year” (The Washington Post). In a rarified world of scientific research, a revolution has been brewing. Its activists are not anarchists, but rather Nobel Laureates in physics and economics and pony-tailed graduates, mathematicians, and computer scientists from all over the world. They have formed an iconoclastic think-tank and their radical idea is to create a new science: complexity. They want to know how a primordial soup of simple molecules managed to turn itself into the first living cell—and what the origin of life some four billion years ago can tell us about the process of technological innovation today. This book is their story—the story of how they have tried to forge what they like to call the science of the twenty-first century. “Lucidly shows physicists, biologists, computer scientists and economists swapping metaphors and reveling in the sense that epochal discoveries are just around the corner . . . [Waldrop] has a special talent for relaying the exhilaration of moments of intellectual insight.” —The New York Times Book Review “Where I enjoyed the book was when it dove into the actual question of complexity, talking about complex systems in economics, biology, genetics, computer modeling, and so on. Snippets of rare beauty here and there almost took your breath away.” —Medium “[Waldrop] provides a good grounding of what may indeed be the first flowering of a new science.” —Publishers Weekly




Chaos


Book Description

Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.