Characteristic Modes


Book Description

Describes how to systematically implement various characteristic mode (CM) theories into designs of practical antenna systems This book examines both theoretical developments of characteristic modes (CMs) and practical developments of CM-based methodologies for a variety of critical antenna designs. The book is divided into six chapters. Chapter 1 provides an introduction and discusses the recent advances of the CM theory and its applications in antenna engineering. Chapter 2 describes the formulation of the characteristic mode theory for perfectly electrically conducting (PEC) bodies and discusses its numerical implementations. Chapter 3 presents the CM theory for PEC structures embedded in multilayered medium and its applications. Chapter 4 covers recent advances in CM theory for dielectric bodies and also their applications. Chapter 5 discusses the CM theory for N-port networks and its applications to the design of antenna arrays. Finally, Chapter 6 discusses the design of platform-integrated antenna systems using characteristic modes. This book features the following: Introduces characteristic mode theories for various electromagnetic structures including PEC bodies, structures in multilayered medium, dielectric bodies, and N-port networks Examines CM applications in electrically small antennas, microstrip patch antennas, dielectric resonator antennas, multiport antennas, antenna arrays, and platform mounted antenna systems Discusses numerical algorithms for the implementation of the characteristic mode theories in computer code Characteristic Modes: Theory and Applications in Antenna Engineering will help antenna researchers, engineers, and students find new solutions for their antenna design challenges.




The Control Handbook


Book Description

This is the biggest, most comprehensive, and most prestigious compilation of articles on control systems imaginable. Every aspect of control is expertly covered, from the mathematical foundations to applications in robot and manipulator control. Never before has such a massive amount of authoritative, detailed, accurate, and well-organized information been available in a single volume. Absolutely everyone working in any aspect of systems and controls must have this book!




Characteristic Modes


Book Description

Describes how to systematically implement various characteristic mode (CM) theories into designs of practical antenna systems This book examines both theoretical developments of characteristic modes (CMs) and practical developments of CM-based methodologies for a variety of critical antenna designs. The book is divided into six chapters. Chapter 1 provides an introduction and discusses the recent advances of the CM theory and its applications in antenna engineering. Chapter 2 describes the formulation of the characteristic mode theory for perfectly electrically conducting (PEC) bodies and discusses its numerical implementations. Chapter 3 presents the CM theory for PEC structures embedded in multilayered medium and its applications. Chapter 4 covers recent advances in CM theory for dielectric bodies and also their applications. Chapter 5 discusses the CM theory for N-port networks and its applications to the design of antenna arrays. Finally, Chapter 6 discusses the design of platform-integrated antenna systems using characteristic modes. This book features the following: Introduces characteristic mode theories for various electromagnetic structures including PEC bodies, structures in multilayered medium, dielectric bodies, and N-port networks Examines CM applications in electrically small antennas, microstrip patch antennas, dielectric resonator antennas, multiport antennas, antenna arrays, and platform mounted antenna systems Discusses numerical algorithms for the implementation of the characteristic mode theories in computer code Characteristic Modes: Theory and Applications in Antenna Engineering will help antenna researchers, engineers, and students find new solutions for their antenna design challenges.




Substrate Integrated Suspended Line Antenna and Arrays


Book Description

This book delves deeply into the substrate integrated suspended line antenna technologies and evaluates its potential to replace conventional three-dimensional (3D) metal-based antennas. Over the years, studies on substrate integrated suspended line antennas have captivated engineers and scientists from the antennas and related engineering fields, all aiming to achieve low-cost and low-loss characteristics. The book establishes a fundamental framework for this topic, while emphasizing the importance of substrate integrated suspended line antennas in the wireless communication and radar systems. It is designed for undergraduate and graduate students who are interested in antenna technology, researchers investigating substrate integrated technology, and antenna engineers working on low-cost and low-loss antennas and arrays.




Essentials of Digital Signal Processing


Book Description

Offers a fresh approach to digital signal processing (DSP), combining heuristic reasoning and physical appreciation with mathematical methods.




Mathematics and Music


Book Description

Mathematics and Music: Composition, Perception, and Performance, Second Edition includes many new sections and more consistent expectations of a student’s experience. The new edition of this popular text is more accessible for students with limited musical backgrounds and only high school mathematics is required. The new edition includes more illustrations than the previous one and the added sections deal with the XronoMorph rhythm generator, musical composition, and analyzing personal performance. The text teaches the basics of reading music, explaining how various patterns in music can be described with mathematics, providing mathematical explanations for musical scales, harmony, and rhythm. The book gives students a deeper appreciation showing how music is informed by both its mathematical and aesthetic structures. Highlights of the Second Edition: Now updated for more consistent expectations of students’ backgrounds More accessible for students with limited musical backgrounds Full-color presentation Includes more thorough coverage of spectrograms for analyzing recorded music Provides a basic introduction to reading music Features new coverage of building and evaluating rhythms




Electromagnetic Radiation, Scattering, and Diffraction


Book Description

Electromagnetic Radiation, Scattering, and Diffraction Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics. The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems. Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as: Basic equations governing all electromagnetic (EM) phenomena at macroscopic scales are presented systematically. Stationary and relativistic moving boundary conditions are developed. Waves in planar multilayered isotropic and anisotropic media are analyzed. EM theorems are introduced and applied to a variety of useful antenna problems. Modal techniques are presented for analyzing guided wave and periodic structures. Potential theory and Green's function methods are developed to treat interior and exterior EM problems. Asymptotic High Frequency methods are developed for evaluating radiation Integrals to extract ray fields. Edge and surface diffracted ray fields, as well as surface, leaky and lateral wave fields are obtained. A collective ray analysis for finite conformal antenna phased arrays is developed. EM beams are introduced and provide useful basis functions. Integral equations and their numerical solutions via the method of moments are developed. The fast multipole method is presented. Low frequency breakdown is studied. Characteristic modes are discussed. Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.







Multiband Integrated Antennas for 4G Terminals


Book Description

The book serves as a comprehensive, one-stop resource, including in-depth coverage of multiband integrated antenna design, simulation, testing and manufacturing. This practical book helps you solve integration problems for ever-increasing multiband requirements. You find discussions on important considerations regarding future handset MIMO terminals, such as efficiency and the effect of the user. The book also shows you how to avoid tweaking for fractal multiband designs and printed dipole design.




Antennas


Book Description

Antennas From Theory to Practice Comprehensive coverage of the fundamentals and latest developments in antennas and antenna design In the newly revised Second Edition of Antennas: From Theory to Practice, renowned researcher, engineer, and author Professor Yi Huang delivers comprehensive and timely coverage of issues in modern antenna design and theory. Practical and accessible, the book is written for engineers, researchers, and students who work with radio frequency/microwave engineering, radar, and radio communications. The book details the basics of transmission lines, radiowaves and propagation, antenna theory, antenna analysis and design using industrial standard design software tools and the theory of characteristic modes, antenna measurement equipment, facilities, and techniques. It also covers the latest developments in special topics, like small and mobile antennas, wide- and multi-band antennas, automotive antennas, RFID, UWB, metamaterials, reconfigurable and MIMO antennas, and more. The new edition includes up to date information on a wide variety of newly relevant topics and trends, like adaptive impedance matching, the theory of characteristic modes, antenna materials and fabrication processes, and over-the-air (OTA) antenna system measurements. Many questions and examples are provided which enhances the ­learning experience. The book covers: An introduction to circuit concepts and transmission lines, including lumped and distributed element systems, transmission line theory, and the Smith Chart An exploration of field concepts and radiowaves, including wave equations and solutions and radiowave propagation mechanisms, characteristics, and models Discussions of antenna basics and popular antennas, including wire-type antennas, aperture-type antennas, and antenna arrays Information about antenna manufacturing and measurements, including antenna measurement facilities and methods The use of industrial standard simulation tools for antenna design and analysis Perfect for engineers and researchers who work in RF engineering or radar and radio communications, Antennas: From Theory to Practice, Second Edition will also earn a place on the bookshelves of university students seeking a concise and practical introduction to the basics of antennas and antenna design.