Superpave Mix Design


Book Description




Advances in Asphalt Materials


Book Description

The urgent need for infrastructure rehabilitation and maintenance has led to a rise in the levels of research into bituminous materials. Breakthroughs in sustainable and environmentally friendly bituminous materials are certain to have a significant impact on national economies and energy sustainability. This book will provide a comprehensive review on recent advances in research and technological developments in bituminous materials. Opening with an introductory chapter on asphalt materials and a section on the perspective of bituminous binder specifications, Part One covers the physiochemical characterisation and analysis of asphalt materials. Part Two reviews the range of distress (damage) mechanisms in asphalt materials, with chapters covering cracking, deformation, fatigue cracking and healing of asphalt mixtures, as well as moisture damage and the multiscale oxidative aging modelling approach for asphalt concrete. The final section of this book investigates alternative asphalt materials. Chapters within this section review such aspects as alternative binders for asphalt pavements such as bio binders and RAP, paving with asphalt emulsions and aggregate grading optimization. - Provides an insight into advances and techniques for bituminous materials - Comprehensively reviews the physicochemical characteristics of bituminous materials - Investigate asphalt materials on the nano-scale, including how RAP/RAS materials can be recycled and how asphalt materials can self-heal and rejuvenator selection




Asphalt Materials Science and Technology


Book Description

Asphalt is a complex but popular civil engineering material. Design engineers must understand these complexities in order to optimize its use. Whether or not it is used to pave a busy highway, waterproof a rooftop or smooth out an airport runway, Asphalt Materials Science and Technology acquaints engineers with the issues and technologies surrounding the proper selection and uses of asphalts. With this book in hand, researchers and engineering will find a valuable guide to the production, use and environmental aspect of asphalt. - Covers the Nomenclature and Terminology for Asphalt including: Performance Graded (PG) Binders, Asphalt Cement (AC), Asphalt-Rubber (A-R) Binder, Asphalt Emulsion and Cutback Asphalt - Includes Material Selection Considerations, Testing, and applications - Biodegradation of Asphalt and environmental aspects of asphalt use




The Utilization of Slag in Civil Infrastructure Construction


Book Description

The Utilization of Slag in Civil Infrastructure Construction strives to integrate the theory, research, and practice of slag utilization, including the production and processing of slags. The topics covered include: production and smelting processes for metals; chemical and physical properties of slags; pretreatment and post-treatment technology to enhance slag properties; potential environmental impact; mechanisms of potential expansion; special testing methods and characteristics; slag processing for aggregate and cementitious applications; suitability of slags for use in specific applications; overall properties of materials containing slags; and commercialization and economics. The focus of the book is on slag utilization technology, with a review of the basic properties and an exploration of how its use in the end product will be technically sound, environment-friendly, and economic. - Covers the production, processing, and utilization of a broad range of ferrous, non-ferrous, and non-metallurgical slags - Provides information on applicable methods for a particular slag and its utilization to reduce potential environmental impacts and promote natural resource sustainability - Presents the overall technology of transferring a slag from the waste stream into a useful materials resource - Provides a detailed review of the appropriate utilization of each slag from processing right through to aggregate and cementitious use requirements




Eco-efficient Pavement Construction Materials


Book Description

Eco-efficient Pavement Construction Materials acquaints engineers with research findings on new eco-efficient pavement materials and how they can be incorporated into future pavements. Divided into three distinctive parts, the book emphasizes current research topics such as pavements with recycled waste, pavements for climate change mitigation, self-healing pavements, and pavements with energy harvesting potential. Part One considers techniques for recycling, Part Two reviews the contribution of pavements for climate change mitigation, including cool pavements, the development of new coatings for high albedo targets, and the design of pervious pavements. Finally, Part Three focuses on self-healing pavements, addressing novel materials and design and performance. Finally, the book discusses the case of pavements with energy harvesting potential, addressing different technologies on this field. - Offers a clear and concise lifecycle assessment of asphalt pavement recycling for greenhouse gas emission with temporal aspects - Applies key research trends to green the pavement industry - Includes techniques for recycling waste materials, the design of cool pavements, self-healing mechanisms, and key steps in energy harvesting




Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE)


Book Description

This volume highlights the latest advances, innovations, and applications in the field of asphalt pavement technology, as presented by leading international researchers and engineers at the 5th International Symposium on Asphalt Pavements & Environment (ISAP 2019 APE Symposium), held in Padua, Italy on September 11-13, 2019. It covers a diverse range of topics concerning materials and technologies for asphalt pavements, designed for sustainability and environmental compatibility: sustainable pavement materials, marginal materials for asphalt pavements, pavement structures, testing methods and performance, maintenance and management methods, urban heat island mitigation, energy harvesting, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.




Climate Change, Energy, Sustainability and Pavements


Book Description

Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently. To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today’s interconnected world. As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design, construction, and maintenance of highway and airport pavement systems. To prepare the human capacity to develop and implement these solutions, many educators, policy-makers and practitioners have stressed the paramount importance of formally incorporating sustainability concepts in the civil engineering curriculum to educate and train future civil engineers well-equipped to address our current and future sustainability challenges. This book will prove a valuable resource in the hands of researchers, educators and future engineering leaders, most of whom will be working in multidisciplinary environments to address a host of next-generation sustainable transportation infrastructure challenges. "This book proposes a broad detailed overview of the actual scientific knowledge about pavements linked to climate change, energy and sustainability at the international level in an original multidimensional/multi-effects way. By the end, the reader will be aware of the whole global issues to care about for various pavement technical features around the world, among which the implications of modelling including data collection, challenging resources saving and infrastructures services optimisation. This is a complete and varied work, rare in the domain." Dr. Agnes Jullien Research Director Director of Environmental, Development, Safety and Eco-Design Laboratory (EASE) Department of Development, Mobility and Environment Ifsttar Centre de Nantes Cedex- France “An excellent compilation of latest developments in the field of sustainable pavements. The chapter topics have been carefully chosen and are very well-organized with the intention of equipping the reader with the state-of-the-art knowledge on all aspects of pavement sustainability. Topics covered include pavement Life Cycle Analysis (LCA), pervious pavements, cool pavements, photocatalytic pavements, energy harvesting pavements, etc. which will all be of significant interest to students, researchers, and practitioners of pavement engineering. This book will no doubt serve as an excellent reference on the topic of sustainable pavements.” Dr. Wei-Hsing Huang Editor-in-Chief of International Journal of Pavement Research and Technology (IJPRT) and Professor of Civil Engineering National Central University Taiwan




Polymer Modified Bitumen


Book Description

The addition of polymers to bitumen allows the modification of certain physical properties, such as softening point, brittleness and ductility, of the bitumen. Polymer modified bitumen: Properties and characterisation provides a valuable and in-depth coverage of the science and technology of polymer modified bitumen.After an initial introduction to bitumen and polymer modified bitumen, the book is divided into two parts. Chapters in part one focus on the preparation and properties of a range of polymer modified bitumen, including polymer bitumen emulsions, modification of bitumen with poly (urethanes), waste rubber and plastic and polypropylene fibres. Part two addresses the characterisation and properties of polymer modified bitumen. Chapter topics covered include rheology, simulated and actual long term ageing studies; the solubility of bituminous binders in fuels and the use of Fourier transform infrared spectroscopy to study ageing/oxidation of polymer modified bitumen.Polymer modified bitumen is an essential reference for scientists and engineers, from both academia and the civil engineering and transport industries, interested in the properties and characterisation of polymer modified bitumen. - Provides a comprehensive and in-depth coverage of the science and technology of polymer modified bitumen - Focuses on the preparation and properties of a range of polymer modified bitumen, including emulsions, modification of bitumen with poly(urethanes), waste rubber and plastic as well as polypropylene fibres - Addresses the characterization and properties of polymer modified bitumen, including rheology, simulated and actual long term ageing studies, and the solubility of bituminous binders in fuels







8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials


Book Description

This work presents the results of RILEM TC 237-SIB (Testing and characterization of sustainable innovative bituminous materials and systems). The papers have been selected for publication after a rigorous peer review process and will be an invaluable source to outline and clarify the main directions of present and future research and standardization for bituminous materials and pavements. The following topics are covered: - Characterization of binder-aggregate interaction - Innovative testing of bituminous binders, additives and modifiers - Durability and aging of asphalt pavements - Mixture design and compaction analysis - Environmentally sustainable materials and technologies - Advances in laboratory characterization of bituminous materials - Modeling of road materials and pavement performance prediction - Field measurement and in-situ characterization - Innovative materials for reinforcement and interlayer systems - Cracking and damage characterization of asphalt pavements - Recycling and re-use in road pavements This is the proceedings of the RILEM SIB2015 Symposium (Ancona, Italy, October 7-9, 2015).