Growth Regulators and Biostimulants: Upcoming Opportunities


Book Description

In the recent past, significant strides have been made in the domain of plant growth regulators (PGRs) and biostimulants. In the sustainable utilization of plant germplasm PGRs and biostimulants play a pivotal role. With a magnified growth rate and less risk of inducing clonal somaclonal variations, PGRs (such as auxins, gibberellins, isoprenoid and aromatic cytokinins, ethylene, and abscisic acid) serve as a boon to plant biologists especially those working with rare endangered and threatened species and medicinal and aromatic plant species. Furthermore, the combined effect of PGRs with LEDs (light-emitting diode) on various aspects of plant development is an area of research gaining attention. The use of biostimulants to promote plant growth, yield and stress tolerance has increasingly gained attention. However, their functional role in the growth and development of plants is not clearly understood.




Manual on MUTATION BREEDING THIRD EDITION


Book Description

This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.







Modern Applications of Plant Biotechnology in Pharmaceutical Sciences


Book Description

Modern Applications of Plant Biotechnology in Pharmaceutical Sciences explores advanced techniques in plant biotechnology, their applications to pharmaceutical sciences, and how these methods can lead to more effective, safe, and affordable drugs. The book covers modern approaches in a practical, step-by-step manner, and includes illustrations, examples, and case studies to enhance understanding. Key topics include plant-made pharmaceuticals, classical and non-classical techniques for secondary metabolite production in plant cell culture and their relevance to pharmaceutical science, edible vaccines, novel delivery systems for plant-based products, international industry regulatory guidelines, and more. Readers will find the book to be a comprehensive and valuable resource for the study of modern plant biotechnology approaches and their pharmaceutical applications. - Builds upon the basic concepts of cell and plant tissue culture and recombinant DNA technology to better illustrate the modern and potential applications of plant biotechnology to the pharmaceutical sciences - Provides detailed yet practical coverage of complex techniques, such as micropropogation, gene transfer, and biosynthesis - Examines critical issues of international importance and offers real-life examples and potential solutions







Meta-topolin: A Growth Regulator for Plant Biotechnology and Agriculture


Book Description

Plant tissue culture (PTC) technology has gained unassailable success for its various commercial and research applications in plant sciences. Plant growth regulators (PGRs) are an essential part of any plant tissue culture intervention for propagation or modification of plants. A wide range of PGRs are available, including aromatic compounds that show cytokinin activities, promote cell division and micro-propagation, viz. kinetin, N6-benzyladenine and topolins. Topolins are naturally occurring aromatic compounds that have gained popularity as an effective alternative for other frequently used cytokinins in in vitro culture of plants. Among them, meta-topolin [6-(3-hydroxybenzlyamino) purine] is the most popular and its use in plant tissue culture has amplified swiftly. During the last few decades, there have been numerous reports highlighting the effectiveness of meta-topolin in micropropagation and alleviation of various physiological disorders, rooting and acclimatization of tissue culture raised plants.




Protocols for Micropropagation of Woody Trees and Fruits


Book Description

Micropropagation has become a reliable and routine approach for large-scale rapid plant multiplication, which is based on plant cell, tissue and organ culture on well defined tissue culture media under aseptic conditions. A lot of research efforts are being made to develop and refine micropropagation methods and culture media for large-scale plant multiplication of several number of plant species. However, many forest and fruit tree species still remain recalcitrant to in vitro culture and require highly specific culture conditions for plant growth and development. The recent challenges on plant cell cycle regulation and the presented potential molecular mechanisms of recalcitrance are providing excellent background for understanding on totipotency and what is more development of micropropagation protocols. For large-scale in vitro plant production the important attributes are the quality, cost effectiveness, maintenance of genetic fidelity, and long-term storage. The need for appropriate in vitro plant regeneration methods for woody plants, including both forest and fruit trees, is still overwhelming in order to overcome problems facing micropropagation such as somaclonal variation, recalcitrant rooting, hyperhydricity, polyphenols, loss of material during hardening and quality of plant material. Moreover, micropropagation may be utilized, in basic research, in production of virus-free planting material, cryopreservation of endangered and elite woody species, applications in tree breeding and reforestation.




Plant Aging


Book Description

For many, the terms aging, maturation and senescence are synonymous and used interchangeably, but they should not be. Whereas senescence represents an endogenously controlled degenerative programme leading to plant or organ death, genetiC aging encompasses a wide array of passive degenerative genetiC processes driven primarily by exogenous factors (Leopold, 1975). Aging is therefore considered a consequence of genetiC lesions that accumulate over time, but by themselves do not necessarily cause death. These lesions are probably made more severe by the increase in size and complexity in trees and their attendant physiology. Thus while the withering of flower petals following pollination can be considered senescence, the loss of viability of stored seeds more clearly represents aging (Norden, 1988). The very recent book "Senescence and Aging in Plants" does not discuss trees, the most dominant group of plants on the earth. Yet both angiospermic and gymnospermic trees also undergo the above phenomena but less is known about them. Do woody plants senesce or do they just age? What is phase change? Is this synonymous with maturation? While it is now becoming recognized that there is no programmed senescence in trees, senescence of their parts, even in gymnosperms (e. g. , needles of temperate conifers las t an average of 3. 5 years), is common; but aging is a readily acknowledged phenomenon. In theory, at least, in the absence of any programmed senescence trees should -live forever, but in practice they do not.




Pathogen and Microbial Contamination Management in Micropropagation


Book Description

This book is based mainly on invited and offered papers presented at the Second International Symposium on Bacterial and Bacteria-like Contaminants of Plant Tissue Cultures held at University College, Cork, Ireland in September 1996, with additional invited papers. The First International Symposium on Bacterial and Bacteria-like Contaminants of Plant Tissue Cultures was held at the same venue in 1987 and was published as Acta Horticulturae volume 225, 1988. In the intervening years there have been considerable advances in both plant disease diagnostics and in the development of structured approaches to the management of disease and microbial contamination in micropropagation. These approaches have centred on attempts to separate, spatially, the problems of disease transmission and laboratory contamination. Disease-control is best achieved by establishing pathogen-free cultures while laboratory contamination is based on subsequent good working practice. Control of losses due to pathogens and microbial contamination in vitro addresses, arguably, the most importance causes of losses in the industry; nevertheless, losses at and post establishment can also be considerable due to poor quality microplants or micro-shoots. In this symposium, a holistic approach to pathogen and microbial contamination control is evident with the recognition that micropropagators must address pathogen and microbial contamination in vitro, and diseases and microplant failure at establishment. There is increasing interest in establishing beneficial bacterial and mycorrhizal association with microplants in vitro and in vivo.




Thidiazuron: From Urea Derivative to Plant Growth Regulator


Book Description

Plant biotechnology is a most interesting branch for academicians and researchers in recent past. Now days, it becomes a very useful tool in agriculture and medicine and is regarded as a popular area of research especially in biological sciences because it makes an integral use of biochemistry, molecular biology and engineering sciences in order to achieve technological application of cultured tissues, cell and microbes. Plant tissue culture (PTC) refers to a technique of cultivation of plant cells and other parts on artificial nutrient medium in controlled environment under aseptic conditions. PTC requires various nutrients, pH, carbon source, gelling agent, temperature, photoperiod, humidity etc. and most importantly the judicious use of plant growth regulators. Various natural, adenine and phenyl urea derivatives are employed for the induction and proliferation of different types of explants. Several phenyl urea derivatives were evaluated and it was observed that thidiazuron (n-phenyl-N”-1,2,3- thidiazol-5-ulurea) was found to be the most active among the plant growth regulators. Thidiazuron (TDZ) was initially developed as a cotton defoliant and showed high cytokinin like activity. In some examples, its activity was 100 times more than BA in tobacco callus assay and produces more number of shoots in cultures than Zeatin and 2iP. TDZ also showed major breakthrough in tissue culture of various recalcitrant legumes and woody species. For the last two decades, number of laboratories has been working on TDZ with different aspect and number of publications has come out. To the best of our knowledge, there is no comprehensive edited volume on this particular topic. Hence th,e edited volume is a deed to consolidate the scattered information on role of TDZ in plant tissue culture and genetic manipulations that would hopefully prove informative to various researches. Thidiazuron: From Urea Derivative to Plant Growth Regulator compiles various aspects of TDZ in Plant Tissue Culture with profitable implications. The book will provides basic material for academicians and researchers who want to initiate work in this fascinating area of research. The book will contain 26 chapters compiled by International dignitaries and thus giving a holistic view to the edited volume.