Characterization of Polycrystalline Catalytic Materials Using Powder X-Ray Diffraction


Book Description

Discusses the most important scientific features of the characterization of polycrystalline and amorphous materials used as catalysts through the technique of powder X-ray diffraction. Structural studies using powder X-ray diffraction patterns from a laboratory X-ray source at ambient and non-ambient conditions are well documented with illustrations and example. This book describes the choice of various instrumental parameters to be used for of solutions from powder XRD to problems while preparing and using solid materials viz., zeolites, micro and mesoporous molecular sives, oxides, clays etc., as catalyst-composites.




X-Ray Diffraction Crystallography


Book Description

X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.




Microstructure Characterization of Some Polycrystalline Materials


Book Description

In this book the results of preparation and microstructure characterization of some of the polycrystalline industrial materials are reported. It is well established that "tailor made" materials with desired properties can be obtained by controlling the defect related microstructure parameters. The microstructure of a material can be characterized from an analysis of X-ray diffraction line profile that provides a nondestructive indirect method for obtaining large number of microstructure parameters. Polycrystalline materials have been prepared by vacuum melting and high energy ball milling methods. Microstructure characterization of the prepared materials has been made using X-ray powder diffraction, high- resolution optical microscopy and transmission electron microscopy etc. Mechanical property of some of the metallic alloys in terms of microhardness has been measured and structure property correlation has been established for these materials. Special emphasis has been given to the modified Warren-Averbach s approach of Fourier analysis and Rietveld s method of whole powder diffraction profile fitting analysis.




X-Ray Diffraction by Polycrystalline Materials


Book Description

This book presents a physical approach to the diffraction phenomenon and its applications in materials science. An historical background to the discovery of X-ray diffraction is first outlined. Next, Part 1 gives a description of the physical phenomenon of X-ray diffraction on perfect and imperfect crystals. Part 2 then provides a detailed analysis of the instruments used for the characterization of powdered materials or thin films. The description of the processing of measured signals and their results is also covered, as are recent developments relating to quantitative microstructural analysis of powders or epitaxial thin films on the basis of X-ray diffraction. Given the comprehensive coverage offered by this title, anyone involved in the field of X-ray diffraction and its applications will find this of great use.




Handbook of X-Ray Analysis of Polycrystalline Materials


Book Description

The book is best used in the following sequence. (1) The radiation and method of recording are selected in accordance with the data of Chapters 1 and 2; the detailed param eters for the recording are defined. (2) The patterns are indexed with the assistance of the graphs and tables of Chapter 3. (3) The measured intensities are compared with the values found from the tables of Chapter 4. (4) The particular problem at hand (determi nation of stresses, phase analysis, and so on) is solved with the aid of the tables and nomo grams given in the second part of the book. The nomograms can be enlarged for use if necessary. This is not the only mode of use; in particular, the material in the appropriate chapter may be sufficient for a particular type of routine analysis. I have had the benefit of valuable advice from workers in various laboratories (Moscow State University, Moscow Steel Institute, the Institute of Crystallography, the Central Research Institute for Ferrous Metallurgy, the Technological Research Institute of the Automobile Industry, the Karpov Institute of Physical Chemistry, the All-Union Hard Alloys K~search Institute, and so on). In addition, I am deeply indebted for much assistance to Professor Ya. S. Umanskii (scientific editor), Professor V. I. Iveronova, Professor A. I. Kitaigorodskii, G. A. Gol'der, and V. I. Rydnik. I recognize that this work cannot be free from deficiencies, and I should like to thank in advance workers in x-ray laboratories who may offer criticisms.




Polycrystalline Materials


Book Description

The book "Polycrystalline Materials - Theoretical and Practical Aspects" is focused on contemporary investigations of plastic deformation, strength and grain-scale approaches, methods of synthesis, structurals, properties, and application of some polycrystalline materials. It is intended for students, post-graduate students, and scientists in the field of polycrystalline materials.




Characterization of Catalytic Materials


Book Description

Heterogeneous catalysis has undergone a revolutionary change in the past two decades due to the development of sophisticated characterization methods that provide fundamental information about the catalyst bulk structures, surfaces, and their properties. For the first time, these characterization methods have allowed researchers to "see" the surfaces of catalytic materials, their bulk structures (crystalline as well as amorphous phases), the influence of the process conditions on the catalytic material, as well as the effect of different synthesis methods. This new information has tremendously advanced our understanding of catalytic materials and their properties. These characterization methods have become our "eyes" and are indispensible in the development of new catalytic materials. It is hard to conceive of a modern heterogeneous catalysis activity, be it research or manufacturing, without the aid of these new characterization techniques.




Handbook of X-Ray Analysis of Polycrystalline Materials


Book Description

The book is best used in the following sequence. (1) The radiation and method of recording are selected in accordance with the data of Chapters 1 and 2; the detailed param eters for the recording are defined. (2) The patterns are indexed with the assistance of the graphs and tables of Chapter 3. (3) The measured intensities are compared with the values found from the tables of Chapter 4. (4) The particular problem at hand (determi nation of stresses, phase analysis, and so on) is solved with the aid of the tables and nomo grams given in the second part of the book. The nomograms can be enlarged for use if necessary. This is not the only mode of use; in particular, the material in the appropriate chapter may be sufficient for a particular type of routine analysis. I have had the benefit of valuable advice from workers in various laboratories (Moscow State University, Moscow Steel Institute, the Institute of Crystallography, the Central Research Institute for Ferrous Metallurgy, the Technological Research Institute of the Automobile Industry, the Karpov Institute of Physical Chemistry, the All-Union Hard Alloys K~search Institute, and so on). In addition, I am deeply indebted for much assistance to Professor Ya. S. Umanskii (scientific editor), Professor V. I. Iveronova, Professor A. I. Kitaigorodskii, G. A. Gol'der, and V. I. Rydnik. I recognize that this work cannot be free from deficiencies, and I should like to thank in advance workers in x-ray laboratories who may offer criticisms.




Nanoscale Materials


Book Description

Organized nanoassemblies of inorganic nanoparticles and organic molecules are building blocks of nanodevices, whether they are designed to perform molecular level computing, sense the environment or improve the catalytic properties of a material. The key to creation of these hybrid nanostructures lies in understanding the chemistry at a fundamental level. This book serves as a reference book for researchers by providing fundamental understanding of many nanoscopic materials.