Ceramic Processing


Book Description

Very Good,No Highlights or Markup,all pages are intact.




Characterization and Modeling to Control Sintered Ceramic Microstructures and Properties


Book Description

These proceedings are designed to provide a forum that integrates research in characterization and modeling to advance the science of ceramic/composite sintering. Densification, shape deformation, and microstructure evolution during sintering is addressed.




Engineered Materials Handbook, Desk Edition


Book Description

A comprehensive reference on the properties, selection, processing, and applications of the most widely used nonmetallic engineering materials. Section 1, General Information and Data, contains information applicable both to polymers and to ceramics and glasses. It includes an illustrated glossary, a collection of engineering tables and data, and a guide to materials selection. Sections 2 through 7 focus on polymeric materials--plastics, elastomers, polymer-matrix composites, adhesives, and sealants--with the information largely updated and expanded from the first three volumes of the Engineered Materials Handbook. Ceramics and glasses are covered in Sections 8 through 12, also with updated and expanded information. Annotation copyright by Book News, Inc., Portland, OR







Transparent Ceramics


Book Description

This book covers the latest progress in the field of transparent ceramics, emphasizing their processing as well as solid-state lasers. It consists of 10 chapters covering the synthesis, characterization and compaction, fundamentals of sintering, densification of transparent ceramics by different methods as well as transparent ceramic applications. This book can be used as a reference for senior undergraduate to postgraduate students, researchers, engineers and material scientists working in solid-state physics.







Ceramics Science and Technology, Volume 3


Book Description

Although ceramics have been known to mankind literally for millennia, research has never ceased. Apart from the classic uses as a bulk material in pottery, construction, and decoration, the latter half of the twentieth century saw an explosive growth of application fields, such as electrical and thermal insulators, wear-resistant bearings, surface coatings, lightweight armour, or aerospace materials. In addition to plain, hard solids, modern ceramics come in many new guises such as fabrics, ultrathin films, microstructures and hybrid composites. Built on the solid foundations laid down by the 20-volume series Materials Science and Technology, Ceramics Science and Technology picks out this exciting material class and illuminates it from all sides. Materials scientists, engineers, chemists, biochemists, physicists and medical researchers alike will find this work a treasure trove for a wide range of ceramics knowledge from theory and fundamentals to practical approaches and problem solutions.




Fundamentals of Ceramic Powder Processing and Synthesis


Book Description

Ceramic powder synthesis and processing are two of the most important technologies in chemical engineering and the ceramics-related area of materials science. This book covers both the processing and the synthesis ofceramic powders in great depth and is indeed the only up-to-date, comprehensive source on the subject available.The application of modern scientific and engineering methods to the field of ceramic powder synthesis has resulted in much greater control of properties. Fundamentals of Ceramic Powder Processing and Synthesis presents examples of these modern methods as they apply to ceramic powders. The book is organized to describe the natural and synthetic raw materials that comprise contemporary ceramics. It covers the three reactant processes used in synthetic ceramic powder synthesis: solid, liquid, andgas.Ceramic powder processing, as a field of materials processing, is undergoing rapid expansion. The present volume is intended as a complete and useful source on this subject of great current interest. It provides comprehensive coverage from a strong chemistry and chemical engineering perspective and is especially applicable to materials scientists, chemical engineers, and applied chemists.Key Features* The most complete and updated reference source on the subject* Comprehensive coverage from a stron chemical engineering and chemistry perspective* Emphasis on both natural and synthetic raw materials in ceramic powder synthesis* Information on reaction kinetics* Superior, more comprehensive coverage than that in existing texts* Sample problems and exercises* Problems at the end of each chapter which supplement the material




Ceramic Processing and Sintering


Book Description

As the field's premiere source, this reference is extensively revised and expanded to collect hard-to-find applications, equations, derivations, and examples illustrating the latest developments in ceramic processing technology. This book is concerned primarily with the processing of polycrystalline ceramics and focuses on the widespread fabrication of ceramics by the firing of consolidated powders forms. A brief treatment of sol-gel processing is also included. Ceramic Processing and Sintering, Second Edition provides clear and intensive discussions on colloidal and sol-gel processing, sintering of ceramics, and kinetic processes in materials. From powder synthesis and consolidation to sintering and densification behavior, this latest edition emphasizes the impact of each processing procedure on ceramic properties. The second edition also contains new and extended discussions on colloid stability, polymer growth and gelation, additives in ceramic forming, diffusion and defect strucutre, normal and abnormal grain growth, microwave sintering, Rayleigh instability effects, and Ostwald ripening. Illustrating the interconnectedness between the various steps in the overall fabrication route, Ceramic Processing and Sintering, Second Edition approaches the fundamental issues of each process and show how they are applied to the practical fabrication of ceramics.




Metal Oxides


Book Description

The chemistry of metals has traditionally been more understood than that of its oxides. As catalytic applications continue to grow in a variety of disciplines, Metal Oxides: Chemistry and Applications offers a timely account of transition-metal oxides (TMO), one of the most important classes of metal oxides, in the context of catalysis. The