Characterization, Prediction and Modelling of the Crustal Present-Day In-Situ Stresses


Book Description

Geomechanics has a marked impact on the safe and sustainable use of the subsurface. Along with an ongoing demand for hydrocarbon resources there is also a growing emphasis on sustainable subsurface exploitation and development, storage of carbon, hydrogen, energy and (radioactive) waste, as well as sustainable geothermal resource utilization. Such activities are accompanied by an ever-increasing need for higher resolution, fit-for-purpose solutions, workflows and approaches to constrain present-day subsurface stresses and minimize associated uncertainties. Building high fidelity geomechanical-numerical models provides critical input and understanding for diverse engineering designs and construction as well as geoscience applications. Such models greatly contribute towards uncertainty reduction, risk management and risk mitigation during the operational life of a given subsurface development and associated infrastructures (both on and below the surface). This Special Publication contains contributions detailing the latest efforts and perspectives in present-day in-situ stress characterization, prediction and modelling from the borehole to plate-tectonic scale. There is particular emphasis on the uncertainties that are often associated with data and models.




3D Multi-scale Finite Element Analysis of the Present-day Crustal State of Stress and the Recent Kinematic Behaviour of the Northern and Central Upper Rhine Graben


Book Description

This thesis focuses on the contemporary stress state of a continental rift structure, the Upper Rhine Graben, and its present-day reactivation and kinematic behaviour. The graben is currently characterised by relatively slow tectonic deformation accompanied by low to medium seismicity and ongoing subsidence. In this context, the reactivation potential of pre-existing faults associated with the graben structure is one of the main goals of this thesis. Three dimensional finite element modelling is used for simulating the stress state of the study area. Based on the evaluation of the fault reactivation potential, a possible contribution of mechanical earth modelling to earthquake hazard assessment is also investigated. Another task of this thesis is the development of a method and work process for the construction of complex model geometries based on the different data types available. In order to establish a procedure that is independent of local computing and software facilities, the work-flow used is predominantly based on commercial software packages. A brief introduction is given on crustal stresses, their definition, determination and classification. Two approaches of shear failure reactivation evaluation, independent of the rheological parameter of fault surfaces, are discussed. In addition, a summary of the finite element method is given. This includes the influence of mesh quality and the implementation of contact problems as well as the ABAQUS implementation of the material models used (elasticity and elasto-plasticity). The thesis also refers to the approach of multi-scale modelling, nesting or sub-modelling using ABAQUS. The consequences of this approach on the boundary conditions and the model geometries are discussed.




Petroleum Related Rock Mechanics


Book Description

Engineers and geologists in the petroleum industry will find Petroleum Related Rock Mechanics, 2e, a powerful resource in providing a basis of rock mechanical knowledge - a knowledge which can greatly assist in the understanding of field behavior, design of test programs and the design of field operations. Not only does this text give an introduction to applications of rock mechanics within the petroleum industry, it has a strong focus on basics, drilling, production and reservoir engineering. Assessment of rock mechanical parameters is covered in depth, as is acoustic wave propagation in rocks, with possible link to 4D seismics as well as log interpretation. - Learn the basic principles behind rock mechanics from leading academic and industry experts - Quick reference and guide for engineers and geologists working in the field - Keep informed and up to date on all the latest methods and fundamental concepts













Structural Dynamics, Volume 3


Book Description

This the fifth volume of five from the 28th IMAC on Structural Dynamics and Renewable Energy, 2010,, brings together 146 chapters on Structural Dynamics. It presents early findings from experimental and computational investigations of on a wide range of area within Structural Dynamics, including studies such as Simulation and Validation of ODS Measurements made Using a Continuous SLDV Method on a Beam Excited by a Pseudo Random Signal, Comparison of Image Based, Laser, and Accelerometer Measurements, Modal Parameter Estimation Using Acoustic Modal Analysis, Mitigation of Vortex-induced Vibrations in Long-span Bridges, and Vibration and Acoustic Analysis of Brake Pads for Quality Control.







Stress Field of the Earth's Crust


Book Description

Stress Field of the Earth’s Crust is based on lecture notes prepared for a course offered to graduate students in the Earth sciences and engineering at University of Potsdam. In my opinion, it will undoubtedly also become a standard reference book on the desk of most scientists working with rocks, such as geophysicists, structural geologists, rock mechanics experts, as well as geotechnical and petroleum en- neers. That is because this book is concerned with what is probably the most pe- liar characteristic of rock – its initial stress condition. Rock is always under a natural state of stress, primarily a result of the gravitational and tectonic forces to which it is subjected. Crustal stresses can vary regionally and locally and can reach in places considerable magnitudes, leading to natural or man-made mechanical failure. P- existing stress distinguishes rock from most other materials and is at the core of the discipline of “Rock Mechanics”, which has been developed over the last century. Knowledge of rock stress is fundamental to understanding faulting mechanisms and earthquake triggering, to designing stable underground caverns and prod- tive oil fields, and to improving mining methods and geothermal energy extraction, among others. Several books have been written on the subject, but none has atte- ted to be as all-encompassing as the one by Zang and Stephansson.




Advances in Energy and Environment Research


Book Description

The 2016 International Conference on Advances in Energy and Environment Research (ICAEER 2016) took place on August 12-14, 2016 in Guangzhou, China. ICAEER 2016 has been a meeting place for innovative academics and industrial experts in the field of energy and environment research. The primary goal of the conference is to promote research and developmental activities in energy and environment research and further to promote scientific information exchange between researchers, developers, engineers, students, and practitioners working all around the world. The conference will be organized every year making it an ideal platform for people to share views and experiences in energy and environment research and related areas. ICAEER 2016 is dedicated to presenting and publishing novel and fundamental advances in energy and environment research fields. Scholars and specialists on ICAEER 2016, originating from over 10 countries or regions, have shared their knowledge and interesting research results. During the conference, an international stage was prepared for the participants to present their theoretical studies and practical applications.