Metal Oxide-Based Thin Film Structures


Book Description

Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike







Atomic Scale Characterization of Complex Oxide Thin Films


Book Description

Materials with the ABO3 perovskite structure possess a wide variety of properties including superconductivity, ferroelectric, and magnetic properties. These properties are highly tunable due to the fact that the B site cation can assume multiple valence states and its high structural stability allows for large scale doping and strain. Due to a reduced dimensionality, two dimensional thin films and superlattices grown using techniques such as pulsed laser deposition (PLD) often possess novel properties which differ from the bulk perovskite materials. The origins of these novel properties can be traced to interfacial chemical intermixing, electronic reconstruction, strain as well as defect formation, which cause significant changes in the electronic structures. Therefore, it is crucially important to investigate the atomic and electronic structures of the functional materials in order to understand the correlation between microstructures and physical properties. Chemically-sensitive Z-contrast imaging and bonding-sensitive electron energy loss spectroscopy (EELS) in aberration corrected scanning transmission electron microscopes (STEM) can directly characterize the local structure, strain, composition and bonding on the atomic scale. Determination of the atomic and electronic structures of the interfaces and defects in the thin films can then be correlated with the magnetic and transport properties. Therefore, the understanding of the structure-property relationship for several different systems of perovskite oxide thin films and superlattices were developed on the atomic scale. Multifunctional superlattices composed of ferromagnetic (FM) La(0.7)Sr(0.3)MnO3 (LSMO) and antiferromagnetic (AFM) La(0.7)Sr(0.3)FeO3 (LSFO) have potential applications for next generation data storage and logic devices. Defect formation, driven by strain relaxation in the LSMO/LSFO superlattices can modify not only the structure and surface sharpness, but also the functional properties of the superlattice. Stacking faults were found as one efficient way of strain relaxation while maintaining robust antiferromagnetic properties for a thin [3LSMO][6LSFO] superlattice (repeating motif composed of 3 unit-cell LSMO sublayer and 6 unit-cell LSFO sublayer). On the other hand, for a fully strained [3LSMO][6LSFO], large inter-diffusion across the interface between the LSMO and LSFO layers was detected in EELS line scans, resulting in deteriorated AFM properties. When a [6LSMO][6LSFO] superlattice with one micron thickness, a high density of nanoflowers and cracks/pinholes were observed to result from strain relaxation. The formation of these nanoflowers and cracks/pinholes was suppressed by increasing the growth rate and thereby reducing the growth time and overall thermal treatment of the sample. Strain relaxation was shown to be directly related to the growth conditions and have a large effect on both the structure and functional properties of the superlattices. A series of superlattices composed of non-magnetic La(0.5)Sr(0.5)TiO3 (LSTO) and ferromagnetic LSMO were grown on single crystal oxide substrates with different amounts of misfit strain. No significant electronic structure changes along the interfaces was observed in this series of superlattices as revealed by atomic resolution EELS. In comparison, charge transfer effect was reported for the LSMO/STO superlattices and was shown to cause an ultrathin magnetic dead layer along the interfaces. Thus, compared with the LSMO/STO superlattice, composition tuning of the sublayers was proven to be efficient in controlling the interfacial charge transfer effects in a superlattice. In addition, tetragonal distortion was found to reduce the ferromagnetic ordering, decrease the Tc, increase the resistivity, and even lead to metal-insulator transitions of the superlattices. The strain relaxation defects such as dislocations and low angle grain boundaries serve as important pinning sites for magnetic domains, leading to enhanced coercive field strength. In order to determine the properties of an intermixed interface layer, we have performed a detailed study of the solid solution between LSMO and LSFO, i.e. La(0.7)Sr(0.3)Mn(0.5)Fe(0.5)O3 (LSMFO). A large target-substrate distance during the PLD growth led to cation segregation in the LSMFO film. Cation segregation could cause the formation of diverse local magnetic ordering and B site valence states due to the different local stoichiometry and coordination environment. For the cation segregated LSFMO films, robust ferromagnetic and antiferromagnetic coupling was observed at 150K and room temperature. Decreasing the target-substrate distance resulted to a homogeneous cation distribution in the film, without any ferromagnetic ordering as expected. This result suggests the important role of target-substrate distance and the kinetic energy of the plume species on the crystalline quality and functional properties of perovskite oxide thin films. La(x)Sr(1-x)TiO3 possesses a wide range of functional properties which make it an attractive candidate material for applications such as the conductive buffer for high temperature superconductor growth, transparent conductors, and anodes in solid oxide fuel cells. La(0.5)Sr(0.5)TiO3 thin films were grown using PLD and the resistivity was found to be highly dependent on the O2 background pressure used in the deposition. However, a thin film which was deposited as a single phase film was transformed into a semi-ordered superlattice with TiO2 rich stacking faults and distorted lattices upon exposure to high oxygen pressure (~200torr) during the cooling procedure after deposition. This phase change stabilized Ti4+ ions and dramatically increased the resistivity of the film. In addition, a two dimensional free electron gas could be constructed by confining a few unit cells of La doped STO with STO spacer layers. Our study showed that charge transfer over a distance of ~2 u.c. was present in Sr(0.75)La(0.25)TiO3/STO superlattices. This thickness defined the lower limit for the thickness of the STO spacers in order to confine the charge carriers into two dimensions; secondly, the La dopants were shown to be less localized in thicker superlattice (~100nm) due to interdiffusion upon extended thermal exposure. This information provided important feedback on the fabrication and utilization of this material.In conclusion, several perovskite thin film systems with fascinating properties have been explored in this thesis. Strain states and strain relaxations, defect formation, interfacial atomic mixing, charge transfer, and cation segregation were shown to have profound effect on the functional properties of complex oxide thin film systems. Atomic resolution Z-contrast imaging and EELS provide extremely useful information on the structural and electronic structure variations, which enable us to see the whole picture of growth, structure and properties' interactions.




Improved Charge Transfer by Thin Metal Oxide Films


Book Description

"The field of electronics has an immense impact on our day to day life. Efficient charge transfer at the semiconductor and electrode interface is one of the most crucial issues for the performance of any electronic device. A lot of effort has been spent to address this issue. A counter intuitive phenomenon of insertion of a thin metal oxide film at the semiconductor and electrode interface has gained momentum recently. In the current thesis, based on results of several experiments, I will propose a prominent mechanism of performance improvement with such insertions. I will also demonstrate the applicability of such metal oxide thin films in many other systems. First, I will introduce the scope of the thesis in detail. I will also introduce the background to understand the electronic structure of organic semiconductors, along with the interface formation at the semiconductor/metal interface. Then, I will discuss the measurement techniques. I will start the discussion on results with the insertion of a thin layer of MoOx (a transition metal oxide) between indium tin oxide (ITO) and two well studied organic semiconductors. I will also demonstrate that the optimum insertion layer thickness is just a few nanometers. I will illustrate the importance of high vacuum during the deposition of such insertion layers. I will also discuss the method to recover work function of air exposed MoOx ilms. I will further demonstrate that a thin layer of MoOx can be utilized to dope C60 strongly p-type. Then, I will discuss the application of MoOx insertion layer in CdTe based solar cells. I will further show the application of MoOx and organic double-inter-layer in organic devices. At the end, I will discuss an intense oxygen plasma treatment on ITO films and demonstrate a method to achieve high work function ITO films. The mechanism of high work function and application in devices will also be explained in detail. Finally, I will summarize the thesis"--Page ix-x.




Thin Film Metal-Oxides


Book Description

Thin Film Metal-Oxides provides a representative account of the fundamental structure-property relations in oxide thin films. Functional properties of thin film oxides are discussed in the context of applications in emerging electronics and renewable energy technologies. Readers will find a detailed description of deposition and characterization of metal oxide thin films, theoretical treatment of select properties and their functional performance in solid state devices, from leading researchers. Scientists and engineers involved with oxide semiconductors, electronic materials and alternative energy will find Thin Film Metal-Oxides a useful reference.




Oxide Thin Films, Multilayers, and Nanocomposites


Book Description

This book provides a comprehensive overview of the science of nanostructured oxides. It details the fundamental techniques and methodologies involved in oxides thin film and bulk growth, characterization and device processing, as well as heterostructures. Both, experts in oxide nanostructures and experts in thin film heteroepitaxy, contribute the interactions described within this book.




Oxide Ultrathin Films


Book Description

A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors Titania Thin Films in Biocompatible Materials and Medical Implants Oxide Nanowires for New Chemical Sensor Devices




Oxide Thin Films and Nanostructures


Book Description

Nanostructured oxide materials - ultra-thin films, nanoparticles and other nanometer-scale objects - play prominent roles in many aspects of our every-day life, in nature and in technological applications, among which is the all-oxide electronics of tomorrow. Due to their reduced dimensions and dimensionality, they strongly interact with their environment: gaseous atmosphere, water or support. Their novel physical and chemical properties are the subject of this book, from both a fundamental and an applied perspective. Oxide Thin Films and Nanostructures reviews and illustrates the various methodologies for their growth, fabrication, experimental and theoretical characterization. The role of key parameters such as film thickness, nanoparticle size and support interactions in driving their fundamental properties is underlined. At the ultimate thickness limit, two-dimensional oxide materials are generated, whose functionalities and potential applications are described. The emerging field of cation mixing is mentioned, which opens new avenues for engineering many oxide properties, as witnessed by natural oxide nanomaterials such as clay minerals, which, beyond their role at the Earth's surface, are now widely used in a whole range of human activities. Oxide nanomaterials are involved in many interdisciplinary fields of advanced nanotechnologies. Catalysis, photocatalysis, solar energy materials, fuel cells, corrosion protection, and biotechnological applications are amongst the areas where they are making an impact. The book outlines prototypical examples. A cautious glimpse into future developments of scientific activity is finally ventured to round off the presentation.




Oxide Thin Films and Nanostructures


Book Description

Oxide Thin Films and Nanostructures is an interdisciplinary approach to introduce readers to the field of oxide nano-materials, that is oxides of nano-meter size and dimensions. Emphasis is put to differentiate these nanoscale oxide objects from their solid bulk oxide parents and present their properties in a pedagogic way.