Chebyshev and Fourier Spectral Methods


Book Description

Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.




Chebyshev and Fourier Spectral Methods


Book Description

Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.




Chebyshev & Fourier Spectral Methods


Book Description

The goal of this book is to teach spectral methods for solving boundary value, eigenvalue, and time-dependent problems. Although the title speaks only of Chebyshev polynomials and trigonometric functions, the book also discusses Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions. These notes evolved from a course I have taught the past five years to an audience drawn from half a dozen different disciplines at the University of Michigan: aerospace engineering, meteorology, physical oceanography, mechanical engineering, naval architecture, and nuclear engineering. With such a diverse audience, this book is not focused on a particular discipline, but rather upon solving differential equations in general. The style is not lemma-theorem-Sobolev space, but algorithms guidelines-rules-of-thumb. Although the course is aimed at graduate students, the required background is limited. It helps if the reader has taken an elementary course in computer methods and also has been exposed to Fourier series and complex variables at the undergraduate level. However, even this background is not absolutely necessary. Chapters 2 to 5 are a self contained treatment of basic convergence and interpolation theory.




Chebyshev & Fourier Spectral Methods


Book Description

The goal of this book is to teach spectral methods for solving boundary value, eigenvalue, and time-dependent problems. Although the title speaks only of Chebyshev polynomials and trigonometric functions, the book also discusses Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions. These notes evolved from a course I have taught the past five years to an audience drawn from half a dozen different disciplines at the University of Michigan: aerospace engineering, meteorology, physical oceanography, mechanical engineering, naval architecture, and nuclear engineering. With such a diverse audience, this book is not focused on a particular discipline, but rather upon solving differential equations in general. The style is not lemma-theorem-Sobolev space, but algorithms guidelines-rules-of-thumb. Although the course is aimed at graduate students, the required background is limited. It helps if the reader has taken an elementary course in computer methods and also has been exposed to Fourier series and complex variables at the undergraduate level. However, even this background is not absolutely necessary. Chapters 2 to 5 are a self contained treatment of basic convergence and interpolation theory.




Spectral Methods in MATLAB


Book Description

Mathematics of Computing -- Numerical Analysis.







Spectral Methods And Their Applications


Book Description

This book presents the basic algorithms, the main theoretical results, and some applications of spectral methods. Particular attention is paid to the applications of spectral methods to nonlinear problems arising in fluid dynamics, quantum mechanics, weather prediction, heat conduction and other fields.The book consists of three parts. The first part deals with orthogonal approximations in Sobolev spaces and the stability and convergence of approximations for nonlinear problems, as the mathematical foundation of spectral methods. In the second part, various spectral methods are described, with some applications. It includes Fourier spectral method, Legendre spectral method, Chebyshev spectral method, spectral penalty method, spectral vanishing viscosity method, spectral approximation of isolated solutions, multi-dimensional spectral method, spectral method for high-order equations, spectral-domain decomposition method and spectral multigrid method. The third part is devoted to some recent developments of spectral methods, such as mixed spectral methods, combined spectral methods and spectral methods on the surface.







Mathematics and the Aesthetic


Book Description

This collection of essays explores the ancient affinity between the mathematical and the aesthetic, focusing on fundamental connections between these two modes of reasoning and communicating. From historical, philosophical and psychological perspectives, with particular attention to certain mathematical areas such as geometry and analysis, the authors examine ways in which the aesthetic is ever-present in mathematical thinking and contributes to the growth and value of mathematical knowledge.




Spectral Methods


Book Description

Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.