Chemical Biophysics


Book Description

Chemical Biophysics provides an engineering-based approach to biochemical system analysis for graduate-level courses on systems biology, computational bioengineering and molecular biophysics. It is the first textbook to apply rigorous physical chemistry principles to mathematical and computational modeling of biochemical systems for an interdisciplinary audience. The book is structured to show the student the basic biophysical concepts before applying this theory to computational modeling and analysis, building up to advanced topics and research. Topics explored include the kinetics of nonequilibrium open biological systems, enzyme mediated reactions, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems. End-of-chapter exercises range from confidence-building calculations to computational simulation projects.




Biophysical Chemistry of Proteins


Book Description

The book is structured in nine sections, each containing several chapters. The volume starts with an overview of analytical techniques and progresses through purification of proteins; protein modification and inactivation; protein size, shape, and structure; enzyme kinetics; protein-ligand interactions; industrial enzymology; and laboratory quality control. The book is targeted at all scientists interested in protein research.




Biophysical Chemistry


Book Description

"Biophysical Chemistry is an outstanding book that delivers both fundamental and complex biophysical principles, along with an excellent overview of the current biophysical research areas, in a manner that makes it accessible for mathematically and non-mathematically inclined readers." (Journal of Chemical Biology, February 2009) This text presents physical chemistry through the use of biological and biochemical topics, examples and applications to biochemistry. It lays out the necessary calculus in a step by step fashion for students who are less mathematically inclined, leading them through fundamental concepts, such as a quantum mechanical description of the hydrogen atom rather than simply stating outcomes. Techniques are presented with an emphasis on learning by analyzing real data. Presents physical chemistry through the use of biological and biochemical topics, examples and applications to biochemistry Lays out the necessary calculus in a step by step fashion for students who are less mathematically inclined Presents techniques with an emphasis on learning by analyzing real data Features qualitative and quantitative problems at the end of each chapter All art available for download online and on CD-ROM




Molecular Biophysics


Book Description

Molecular Biophysics presents the fundamental principles of biophysics and their application to the study of the physical properties of biological macromolecules. The merger of biology and physics involves the development of sophisticated instrumentation and the molecular approach to the study of life phenomena. This book is composed of nine chapters and begins with an overview of the thermodynamical aspects and chemical foundations of biophysics. These topics are followed by the physical aspects of macromolecules, with a particular emphasis on the biological functions, conformation, and hydrophobic interactions of proteins. The subsequent chapter describes the structural and electro-optical properties of biopolymers based on X-ray, optical, and spectroscopic analysis. The discussion then shifts to enzymes, their chemical kinetics, catalytic potential, and conformational and cooperative properties. The remaining chapters explore the physical aspects of nucleic acids and the biosynthesis of proteins. This book will prove useful to molecular biophysicists, biologists, physicists, and researchers in the fields of life sciences.




Physical Chemistry for the Biological Sciences


Book Description

This book provides an introduction to physical chemistry that is directed toward applications to the biological sciences. Advanced mathematics is not required. This book can be used for either a one semester or two semester course, and as a reference volume by students and faculty in the biological sciences.




Biophysical Chemistry


Book Description

This book will be ideal for early undergraduates studying chemical or physical sciences and will act as a basis for more advanced study.




Chemical Biology of Natural Products


Book Description

Chemical Biology of Natural Products This unique, long-awaited volume is designed to address contemporary aspects of natural product chemistry and its influence on biological systems, not solely on human interactions. The subjects covered include discovery, isolation and characterization, biosynthesis, biosynthetic engineering, pharmaceutical, and other applications of these compounds. Each chapter begins with a brief and simple introduction to the subject matter, and then proceeds to guide the reader towards the more contemporary, cutting-edge research in the field, with the contributing authors presenting current examples from their own work in order to exemplify key themes. Topics covered in the text include genome mining, heterologous expression, natural product synthesis, biosynthesis, glycosylation, chemical ecology, and therapeutic applications of natural products, both current and potential.




Modern Biophysical Chemistry


Book Description

This updated and up-to-date version of the first edition continues with the really interesting stuff to spice up a standard biophysics and biophysical chemistry course. All relevant methods used in current cutting edge research including such recent developments as super-resolution microscopy and next-generation DNA sequencing techniques, as well as industrial applications, are explained. The text has been developed from a graduate course taught by the author for several years, and by presenting a mix of basic theory and real-life examples, he closes the gap between theory and experiment. The first part, on basic biophysical chemistry, surveys fundamental and spectroscopic techniques as well as biomolecular properties that represent the modern standard and are also the basis for the more sophisticated technologies discussed later in the book. The second part covers the latest bioanalytical techniques such as the mentioned super-resolution and next generation sequencing methods, confocal fluorescence microscopy, light sheet microscopy, two-photon microscopy and ultrafast spectroscopy, single molecule optical, electrical and force measurements, fluorescence correlation spectroscopy, optical tweezers, quantum dots and DNA origami techniques. Both the text and illustrations have been prepared in a clear and accessible style, with extended and updated exercises (and their solutions) accompanying each chapter. Readers with a basic understanding of biochemistry and/or biophysics will quickly gain an overview of cutting edge technology for the biophysical analysis of proteins, nucleic acids and other biomolecules and their interactions. Equally, any student contemplating a career in the chemical, pharmaceutical or bio-industry will greatly benefit from the technological knowledge presented. Questions of differing complexity testing the reader's understanding can be found at the end of each chapter with clearly described solutions available on the Wiley-VCH textbook homepage under: www.wiley-vch.de/textbooks




Biophysical Chemistry


Book Description

"Biophysical Chemistry explores the concepts of physical chemistry and molecular structure that underlie biochemical processes. Ideally suited for undergraduate students and scientists with backgrounds in physics, chemistry or biology, it is also equally accessible to students and scientists in related fields as the book concisely describes the fundamental aspects of biophysical chemistry, and puts them into a biochemical context. This second edition has been fully updated throughout with novel techniques, with a new chapter on advances in cryo-electron microscopy and exciting new content throughout on big data techniques, structural bioinformatics, systems biology and interaction networks, and artificial intelligence and machine learning. The book is organized in four parts, covering thermodynamics, kinetics, molecular structure and stability, and biophysical methods. Cross-references within and between these parts emphasize common themes and highlight recurrent principles. End of chapter problems illustrate the main points explored and their relevance for biochemistry, enabling students to apply their knowledge and to transfer it to laboratory projects"--




Introduction to Experimental Biophysics


Book Description

Increasing numbers of physicists, chemists, and mathematicians are moving into biology, reading literature across disciplines, and mastering novel biochemical concepts. To succeed in this transition, researchers must understand on a practical level what is experimentally feasible. The number of experimental techniques in biology is vast and often s