Chemical Evolution of Galaxies


Book Description

The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of the chemical evolution of the Milky Way, spheroidal galaxies, irregular galaxies and of cosmic chemical evolution. The aim of this book is to provide an introduction to students as well as to amend our present ideas in research; the book also summarizes the efforts made by authors in the past several years in order to further future research in the field.




The Chemical Evolution of the Galaxy


Book Description

This book is based partly on a. lecture course given at the University of Tri este, but mostly on my own research experience in the field of galactic chemical evolution. The subject of galactic chemical evolution was started and developed by Beat rice Tinsley in the seventies and now is a flourishing subject. This book is dedi cated to the chemical evolution of our Galaxy and aims at giving an up-to-date review of what we have learned since Tinsley's pioneering efforts. At the time of writing, in fact, books of this kind were not available with the exception of the excellent book by Bernard Pagel on "Nucleosynthesis and Chemical Evolution of Galaxies" (Cambridge University Press, 1997), and the subject of galactic chem ical evolution has appeared only as short chapters in books devoted to other subjects. Therefore, I felt that a book of this kind could be useful. The book summarizes the observational facts which allow us to reconstruct the chemical history of our Galaxy, in particular the abundances in stars and in terstellar medium; in the last decade, a great deal of observational work, mostly abundance determinations in stars in the solar vicinity, has shed light on the pro duction and distribution of chemical elements. Even more recently more abun dance data have accumulated for external galaxies at both low and high redshift, thus providing precious information on the chemical evolution of different types of galaxies and on the early stages of galaxy evolution.







Understanding the Enrichment of Heavy Elements by the Chemodynamical Evolution Models of Dwarf Galaxies


Book Description

This book addresses the mechanism of enrichment of heavy elements in galaxies, a long standing problem in astronomy. It mainly focuses on explaining the origin of heavy elements by performing state-of-the-art, high-resolution hydrodynamic simulations of dwarf galaxies. In this book, the author successfully develops a model of galactic chemodynamical evolution by means of which the neutron star mergers can be used to explain the observed abundance pattern of the heavy elements synthesized by the rapid neutron capture process, such as europium, gold, and uranium in the Local Group dwarf galaxies. The book argues that heavy elements are significant indicators of the evolutionary history of the early galaxies, and presents theoretical findings that open new avenues to understanding the formation and evolution of galaxies based on the abundance of heavy elements in metal-poor stars.




The Evolution of Galaxies


Book Description

Galaxies have a history. This has become clear from recent sky surveys showing that distant galaxies, formed early in the life of the Universe, differ from the nearby ones. This book contains the proceedings of a 2000 conference addressing observational clues in this area.




Nucleosynthesis and Chemical Evolution of Galaxies


Book Description

A lucid introduction for advanced undergraduates and graduate students, and an authoritative overview for researchers and professional scientists.







Dwarf Galaxies: Keys to Galaxy Formation and Evolution


Book Description

Dwarf galaxy research constitutes an extremely vibrant field of astrophysical research, with many long-standing questions still unsettled and new ones constantly arising. The intriguing diversity of the dwarf galaxy population, observed with advanced ground-based and space-borne observatories over a wide spectral window providing an unprecedented level of detail, poses new challenges for both observers and theoreticians. The aim of this symposium was to bring together these two groups to exchange ideas and new results on the many evolutionary aspects of and open issues concerning dwarf galaxies. The main topics addressed include: the birth of dwarf galaxies: theoretical concepts and observable relics across wavelengths and time, the morphological, structural and chemical evolution of dwarf galaxies, possible evolutionary connections between early-type and late-type dwarfs, the star formation history of dwarf galaxies and its dependence on intrinsic and environmental properties, the origin and implications of starburst activity in dwarf galaxies, the fate of dwarfish systems born out of tidally ejected matter in galaxy collisions.




Chemical Evolution of Galaxies


Book Description

The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of the chemical evolution of the Milky Way, spheroidal galaxies, irregular galaxies and of cosmic chemical evolution. The aim of this book is to provide an introduction to students as well as to amend our present ideas in research; the book also summarizes the efforts made by authors in the past several years in order to further future research in the field.