Chemical Evolution and the Origin of Life


Book Description

How did life begin on the early Earth? We know that life today is driven by the universal laws of chemistry and physics. By applying these laws over the past ?fty years, en- mous progress has been made in understanding the molecular mechanisms that are the foundations of the living state. For instance, just a decade ago, the ?rst human genome was published, all three billion base pairs. Using X-ray diffraction data from crystals, we can see how an enzyme molecule or a photosynthetic reaction center steps through its catalytic function. We can even visualize a ribosome, central to all life, translate - netic information into a protein. And we are just beginning to understand how molecular interactions regulate thousands of simultaneous reactions that continuously occur even in the simplest forms of life. New words have appeared that give a sense of this wealth of knowledge: The genome, the proteome, the metabolome, the interactome. But we can’t be too smug. We must avoid the mistake of the physicist who, as the twentieth century began, stated con?dently that we knew all there was to know about physics, that science just needed to clean up a few dusty corners. Then came relativity, quantum theory, the Big Bang, and now dark matter, dark energy and string theory. Similarly in the life sciences, the more we learn, the better we understand how little we really know. There remains a vast landscape to explore, with great questions remaining.




Chemical Evolution: Physics of the Origin and Evolution of Life


Book Description

Leading researchers in the area of the origin and evolution of life in the universe contributed to Chemical Evolution: Physics of the Origin and Evolution of Life. This volume provides a review of this interdisciplinary field. In 35 chapters many aspects of the origin of life are discussed by 90 authors, with particular emphasis on the early paleontological record: physical, chemical, biological, and informational aspects of life's origin, instrumentation in exobiology and system exploration; the search for habitable planets and extraterrestrial intelligent radio signals. This book contains the proceedings of the Fourth Trieste Conference on Chemical Evolution that took place in September 1995, in which scientists from a wide geographical distribution joined in a Memorial to Cyril Ponnamperuma, who was a pioneer in the field of chemical evolution, the origin of life, and exobiology, and also initiated the Trieste Conferences on Chemical Evolution and the Origin of Life. This fourth Conference was therefore dedicated to his memory. Audience: Graduate students and researchers in the many areas of basic, earth, and life sciences that contribute to the study of chemical evolution and the origin of life.




Molecular Theory of Evolution


Book Description

The subject of this book is the physico-chemical theory of the origin of life. Although this theory is still in statu nascendi, it has been developed in recent years to the point where a coherent presentation is possible. The book is intended as an introductory text for students of physics, chemistry or biology. This interdisciplinary aim has necessitated a choice of material based on the lowest common denominator of physicists and biologists. In particular, the predominantly mathematical and biological sections have been presented at the most elementary l.evel possible. The less mathematically inclined reader can omit Sections (5.3)-(5.5), (5.7)-(5.10), (6.2), (6.3), (9.1)-(9.3), (12.1) and (13.3) without losing the overall view. For critical reading of the manuscript, for discussions and for many useful suggestions I wish to thank M. Eigen (Gottingen), w.e. Gardiner (Austin), D. Porschke (Gottingen), P. Schuster (Vienna), P.R. Wills (Auckland) and P. Woolley (Berlin). The translation of the original, German manuscript into English was kindly undertaken by Paul Woolley. During this and subsequent stages of revision he introduced a great many improvements in the text and the presentation of material. My particular thanks are due to him for his decisive contribution to this book. Last of all I wish to thank Ingeborg Lechten for typing the text in its various stages of evolution. The completion of this book is largely to be attributed to her patience and efficiency.




First Steps in the Origin of Life in the Universe


Book Description

Proceedings of the Sixth Trieste Conference on Chemical Evolution, Trieste, Italy, 18-22 September 2000




The Search for Life's Origins


Book Description

Annotation This National Research Council book was written by a group of professionals with expertise in astronomy, paleobiology, biochemistry, and space science who gathered to study the origin of life--how organic compounds come together to form self-replicating molecules. They also offer recommendations on research programs--including an ambitious effort centered on Mars--to advance the field over the next ten to fifteen years. Annotation(c) 2003 Book News, Inc., Portland, OR (booknews.com).




Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe


Book Description

Leading researchers in the area of the origin, evolution and distribution of life in the universe contributed to Exobiology: Matter, Energy, and Information in the Origin and Evolution of Life in the Universe. This volume provides a review of this interdisciplinary field. In 50 chapters many aspects that contribute to exobiology are reviewed by 90 authors. These include: historical perspective of biological evolution; cultural aspects of exobiology, cosmic, chemical and biological evolution, molecular biology, geochronology, biogeochemistry, biogeology, and planetology. Some of the current missions are discussed. Other subjects in the frontier of exobiology are reviewed, such as the search for planets outside the solar system, and the possible manifestation of intelligence in those new potential environments. The SETI research effort is well represented in this general overview of exobiology. This book is the proceedings of the Fifth Trieste Conference on Chemical Evolution that took place in September 1997. The volume is dedicated to the memory of Nobel Laureate Abdus Salam who suggested the initiation of the Trieste conferences on chemical evolution and the origin of life. Audience: Graduate students and researchers in the many areas of basic, earth, and life sciences that contribute to the study of chemical evolution and the origin, evolution and distribution of life in the universe.




The Emergence of Life


Book Description

The origin of life from inanimate matter has been the focus of much research for decades, both experimentally and philosophically. Luisi takes the reader through the consecutive stages from prebiotic chemistry to synthetic biology, uniquely combining both approaches. This book presents a systematic course discussing the successive stages of self-organisation, emergence, self-replication, autopoiesis, synthetic compartments and construction of cellular models, in order to demonstrate the spontaneous increase in complexity from inanimate matter to the first cellular life forms. A chapter is dedicated to each of these steps, using a number of synthetic and biological examples. With end-of-chapter review questions to aid reader comprehension, this book will appeal to graduate students and academics researching the origin of life and related areas such as evolutionary biology, biochemistry, molecular biology, biophysics and natural sciences.







The Origins of Life


Book Description




The Chemistry of Life’s Origins


Book Description

This volume contains the lectures presented at the second course of the International School of Space Chemistry held in Erice (Sicily) from October 20 - 30 1991 at the "E. Majorana Centre for Scientific Culture". The course was attended by 58 participants from 13 countries. The Chemistry of Life's Origins is well recognized as one of the most critical subjects of modem chemistry. Much progress has been made since the amazingly perceptive contributions by Oparin some 70 years ago when he first outlined a possible series of steps starting from simple molecules to basic building blocks and ultimate assembly into simple organisms capable of replicating, catalysis and evolution to higher organisms. The pioneering experiments of Stanley Miller demonstrated already forty years ago how easy it could have been to form the amino acids which are critical to living organisms. However we have since learned and are still learning a great deal more about the primitive conditions on earth which has led us to a rethinking of where and how the condition for prebiotic chemical processes occurred. We have also learned a great deal more about the molecular basis for life. For instance, the existence of DNA was just discovered forty years ago.