Chemical Evolution


Book Description




Chemical Evolution--self-organization of the Macromolecules of Life


Book Description

The contents record evidence of early life from the oldest known fossil in the geological record, as well as the prior events of chemical evolution & self-organization; the question of the chirality of protein amino acids is discussed. The book is organized in five sections corresponding to chemical, geological, biochemical, & biophysical aspects of self-organization, concluding with a section on chirality. It provides an excellent introduction to this ever-growing interdisciplinary area of research in chemistry, physics, & the life sciences. This volume is a FESTSCHRIFT for the late PROFESSOR CYRIL PONNAMPERUMA in whose honor the Second Trieste Conference was held, & contains the papers presented at the Conference.




Molecular Theory of Evolution


Book Description

The subject of this book is the physico-chemical theory of the origin of life. Although this theory is still in statu nascendi, it has been developed in recent years to the point where a coherent presentation is possible. The book is intended as an introductory text for students of physics, chemistry or biology. This interdisciplinary aim has necessitated a choice of material based on the lowest common denominator of physicists and biologists. In particular, the predominantly mathematical and biological sections have been presented at the most elementary l.evel possible. The less mathematically inclined reader can omit Sections (5.3)-(5.5), (5.7)-(5.10), (6.2), (6.3), (9.1)-(9.3), (12.1) and (13.3) without losing the overall view. For critical reading of the manuscript, for discussions and for many useful suggestions I wish to thank M. Eigen (Gottingen), w.e. Gardiner (Austin), D. Porschke (Gottingen), P. Schuster (Vienna), P.R. Wills (Auckland) and P. Woolley (Berlin). The translation of the original, German manuscript into English was kindly undertaken by Paul Woolley. During this and subsequent stages of revision he introduced a great many improvements in the text and the presentation of material. My particular thanks are due to him for his decisive contribution to this book. Last of all I wish to thank Ingeborg Lechten for typing the text in its various stages of evolution. The completion of this book is largely to be attributed to her patience and efficiency.




Chemical Evolution and the Origin of Life


Book Description

How did life begin on the early Earth? We know that life today is driven by the universal laws of chemistry and physics. By applying these laws over the past ?fty years, en- mous progress has been made in understanding the molecular mechanisms that are the foundations of the living state. For instance, just a decade ago, the ?rst human genome was published, all three billion base pairs. Using X-ray diffraction data from crystals, we can see how an enzyme molecule or a photosynthetic reaction center steps through its catalytic function. We can even visualize a ribosome, central to all life, translate - netic information into a protein. And we are just beginning to understand how molecular interactions regulate thousands of simultaneous reactions that continuously occur even in the simplest forms of life. New words have appeared that give a sense of this wealth of knowledge: The genome, the proteome, the metabolome, the interactome. But we can’t be too smug. We must avoid the mistake of the physicist who, as the twentieth century began, stated con?dently that we knew all there was to know about physics, that science just needed to clean up a few dusty corners. Then came relativity, quantum theory, the Big Bang, and now dark matter, dark energy and string theory. Similarly in the life sciences, the more we learn, the better we understand how little we really know. There remains a vast landscape to explore, with great questions remaining.




The Emergence of Life


Book Description

The origin of life from inanimate matter has been the focus of much research for decades, both experimentally and philosophically. Luisi takes the reader through the consecutive stages from prebiotic chemistry to synthetic biology, uniquely combining both approaches. This book presents a systematic course discussing the successive stages of self-organisation, emergence, self-replication, autopoiesis, synthetic compartments and construction of cellular models, in order to demonstrate the spontaneous increase in complexity from inanimate matter to the first cellular life forms. A chapter is dedicated to each of these steps, using a number of synthetic and biological examples. With end-of-chapter review questions to aid reader comprehension, this book will appeal to graduate students and academics researching the origin of life and related areas such as evolutionary biology, biochemistry, molecular biology, biophysics and natural sciences.




Molecules, Dynamics, and Life


Book Description

This book tells the story of how inert matter can acquire self-organizing and other properties ascribed to life. The author's multidisciplinary approach does not require knowledge of chemistry, physics, or biology on the part of the reader. Part I covers the properties of matter and evolutionary criteria. Part II presents an introduction to the necessary chemical concepts. Part III explains the self-organization of biosystems and the development of organisms.




Chemical Evolution: Physics of the Origin and Evolution of Life


Book Description

Leading researchers in the area of the origin and evolution of life in the universe contributed to Chemical Evolution: Physics of the Origin and Evolution of Life. This volume provides a review of this interdisciplinary field. In 35 chapters many aspects of the origin of life are discussed by 90 authors, with particular emphasis on the early paleontological record: physical, chemical, biological, and informational aspects of life's origin, instrumentation in exobiology and system exploration; the search for habitable planets and extraterrestrial intelligent radio signals. This book contains the proceedings of the Fourth Trieste Conference on Chemical Evolution that took place in September 1995, in which scientists from a wide geographical distribution joined in a Memorial to Cyril Ponnamperuma, who was a pioneer in the field of chemical evolution, the origin of life, and exobiology, and also initiated the Trieste Conferences on Chemical Evolution and the Origin of Life. This fourth Conference was therefore dedicated to his memory. Audience: Graduate students and researchers in the many areas of basic, earth, and life sciences that contribute to the study of chemical evolution and the origin of life.




The Emergence of Life


Book Description

Addressing the emergence of life from a systems biology perspective, this new edition has undergone extensive revision, reflecting changes in scientific understanding and evolution of thought on the question 'what is life?'. With an emphasis on the philosophical aspects of science, including the epistemic features of modern synthetic biology, and also providing an updated view of the autopoiesis/cognition theory, the book gives an exhaustive treatment of the biophysical properties of vesicles, seen as the beginning of the 'road map' to the minimal cell - a road map which will develop into the question of whether and to what extent synthetic biology will be capable of making minimal life in the laboratory. Fully illustrated, accessibly written, directly challenging the reader with provocative questions, offering suggestions for research proposals, and including dialogues with contemporary authors such as Humberto Maturana, Albert Eschenmoser and Harold Morowitz, this is an ideal resource for researchers and students across fields including bioengineering, evolutionary biology, molecular biology, chemistry and chemical engineering.







Origins of Life: The Primal Self-Organization


Book Description

If theoretical physicists can seriously entertain canonical “standard models” even for the big-bang generation of the entire universe, why cannot life scientists reach a consensus on how life has emerged and settled on this planet? Scientists are hindered by conceptual gaps between bottom-up inferences (from early Earth geological conditions) and top-down extrapolations (from modern life forms to common ancestral states). This book challenges several widely held assumptions and argues for alternative approaches instead. Primal syntheses (literally or figuratively speaking) are called for in at least five major areas. (1) The first RNA-like molecules may have been selected by solar light as being exceptionally photostable. (2) Photosynthetically active minerals and reduced phosphorus compounds could have efficiently coupled the persistent natural energy flows to the primordial metabolism. (3) Stochastic, uncoded peptides may have kick-started an ever-tightening co-evolution of proteins and nucleic acids. (4) The living fossils from the primeval RNA World thrive within modern cells. (5) From the inherently complex protocellular associations preceding the consolidation of integral genomes, eukaryotic cell organization may have evolved more naturally than simple prokaryote-like life forms. – If this book can motivate dedicated researchers to further explore the alternative mechanisms presented, it will have served its purpose well.